29 research outputs found

    Holographic conductivity in the massive gravity with power-law Maxwell field

    Full text link
    We obtain a new class of topological black hole solutions in (n+1)(n+1)-dimensional massive gravity in the presence of the power-Maxwell electrodynamics. We calculate the conserved and thermodynamic quantities of the system and show that the first law of thermodynamics is satisfied on the horizon. Then, we investigate the holographic conductivity for the four and five dimensional black brane solutions. For completeness, we study the holographic conductivity for both massless (m=0m=0) and massive (m0m \neq 0) gravities with power-Maxwell field. The massless gravity enjoys translational symmetry whereas the massive gravity violates it. For massless gravity, we observe that the real part of conductivity, Re[σ]\mathrm{Re}[\sigma], decreases as charge qq increases when frequency ω\omega tends to zero, while the imaginary part of conductivity, Im[σ]\mathrm{Im}[\sigma ], diverges as ω0\omega \rightarrow 0. For the massive gravity, we find that Im[σ]\mathrm{Im}[\sigma ] is zero at ω=0\omega =0 and becomes larger as qq\ increases (temperature decreases), which is in contrast to the massless gravity. Interestingly, we observe that in contrast to the massless case, Re[σ]\mathrm{Re}[\sigma ] has a maximum value at ω=0\omega =0 (known as the Drude peak) for p=(n+1)/4p=\left( n+1\right) /4 (conformally invariant electrodynamics) where pp is the power parameter of the power-law Maxwell field and this maximum increases with increasing qq. Finally, we show that for high frequencies, the real part of the holographic conductivity have the power law behavior in terms of frequency, ωa\omega ^{a} where a(n+14p)a \propto (n+1-4p). Some similar behaviors for high frequencies in possible dual CFT systems have been reported in experimental observations.Comment: V2: 15 pages, 5 figures (each one includes \geq 3 subfigures), Some Refs added, Some discussions regarding i) the power-law Maxwell electrodynamics and ii) the relation between our results and experimental observations presented, A suggestion for future extensions give

    Holographic Conductivity for Logarithmic Charged Dilaton-Lifshitz Solutions

    Get PDF
    We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the holographic conductivity for a (2+1)(2+1)-dimensional brane boundary and study its behavior in terms of the frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz-Maxwell-dilaton black branes which has conductivity for all zz, here in the presence of nonlinear gauge field, the holographic conductivity do exist provided z3z\leq3 and vanishes for z>3z>3. It is shown that independent of the nonlinear parameter β\beta, the real part of the conductivity is the same for a specific value of frequency per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as existence of an additional charge carrier rather than the AdS case, and is due to the presence of the scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced by mild oxygen plasma exposure has been reported.Comment: V1: 12 pages, 5 figures (each one includes 2 subfigres) V2: 13 pages, Some references added, Conductivity calculations improved, Accepted for publication in PL

    Critical behavior of charged dilaton black holes in AdS space

    No full text
    We revisit critical behaviour and phase structure of charged anti-deSitter (AdS) dilaton black holes for arbitrary values of dilaton coupling α\alpha, and realize several novel phase behaviour for this system. We adopt the viewpoint that cosmological constant (pressure) is fixed and treat the charge of the black hole as a thermodynamical variable. We study critical behaviour and phase structure by analyzing the phase diagrams in TST-S and qT q-T planes. We numerically derive the critical point in terms of α\alpha and observe that for α=1\alpha =1 and α3\alpha \geq \sqrt{3}, the system does not admit any critical point, while for 0qc0q_{c}, however, a novel first order phase transition occurs between small and large black hole, which has not been observed in the previous studies on phase transition of charged AdS black holes

    Thermodynamics and gauge/gravity duality for Lifshitz black holes in the presence of exponential electrodynamics

    Get PDF
    In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrodynamics separately and disclose the effect of nonlinearity on holographic conductivity. We indicate that holographic conductivity vanishes for z>3z>3 in the case of nonlinear electrodynamics while it does not in the linear Maxwell case. Finally, we solve perturbative additional field equations numerically and plot the behaviors of real and imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. We present experimental results match with our numerical ones.Comment: 31 pages, 16 figures (some figures include two subfigures). V2: some typos corrected, some references adde

    Optical properties of Born-Infeld-dilaton-Lifshitz holographic superconductors

    Full text link
    In this paper, we first study the Lifshitz-dilaton holographic superconductors with nonlinear Born-Infeld (BI) gauge field and obtain the critical temperature of the system for different values of Lifshitz dynamical exponent, zz, and nonlinear parameter bb. We find that for fixed value of bb, the critical temperature decreases with increasing zz. This indicates that the increase of anisotropy between space and time prevents the phase transition. Also, for fixed value of zz, the critical temperature decrease with increasing bb. Then, we investigate the optical properties of (2+12+1) and (3+13+1)-dimensional BI-Lifshitz holographic superconductors in the the presence of dilaton field. We explore the refractive index of the system. For z=1z=1 and (2+1)(2+1)-dimensional holographic superconductor, we observe negative real part for permittivity Re[ϵ]\textrm{Re}[\epsilon] as frequency ω\omega decreases. Thus, in low frequency region our superconductor exhibit metamaterial property. This behaviour is independent of the nonlinear parameter and can be seen for either linear (b=0b=0) and nonlinear (b0b\neq 0) electrodynamics. Interestingly, for (3+13+1)-dimensional Lifshitz-dilaton holographic superconductors, we observe metamaterial behavior neither in the presence of linear nor nonlinear electrodynamics.Comment: 11 pages, 9 figures (including subfigures), some references added in V

    Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics

    Full text link
    In this paper, we first obtain the (n+1n+1)-dimensional dilaton-Lifshitz black hole (BH) solutions in the presence of Born-Infeld (BI) electrodynamics. We find that there are two different solutions for z=n+1z=n+1 and zn+1z\neq n+1 cases (zz is dynamical critical exponent). We show that the thermodynamics first law is satisfied for both cases. Then, we turn to study different phase transitions (PTs) for our BHs. We start with study of Hawking-Page PT for both linearly and BI charged BHs. After that, we discuss the PTs inside the BHs. We present the improved Davies quantities and prove that the PT points shown by them coincide with Ruppeiner ones. We show that the zero temperature PTs are transitions on radiance properties of BHs by using Landau-Lifshitz theory. Next, we turn to study Ruppeiner geometry of linearly and BI charged BHs. For linearly charged case, we show that there are no PT at finite temperature for the case z2z\geq 2. For z<2z<2, it is found that the number of finite temperature PT points depends on the value of BH charge and is not more than two. When we have two finite temperature PT points, there are no thermally stable BH between these two points and we have discontinues small/large BH PTs. As expected, for small BHs, we observe finite magnitude for Ruppeiner invariant which shows the finite correlation between possible BH molecules while for large BHs, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz BHs for different values of zz. We observe that small BHs are thermally unstable in some situations. Also, the behavior of correlation between possible BH molecules for large BHs is the same as linearly charged case. In both linearly and BI charged cases, for some choices of parameters, the BH systems behave like a Van der Waals gas near transition point.Comment: V2: 23 pages (revtex format), 13 figures (except one, all include subfigures), some references adde

    Burn Patients Infected With Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa: Multidrug-Resistant Strains

    Get PDF
    Background: Metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa in the burn patients is a leading cause of morbidity and mortality and remains a serious health concern among the clinicians. Objectives: The aim of this study was to detect MBL-producing P. aeruginosa in burn patients and determine multidrug-resistant (MDR) strains, and respective resistance patterns. Patients and Methods: In this cross-sectional study, 270 strains of P. aeruginosa were isolated from the burn patients referred to Ghotbeddin Burn Hospital, Shiraz, Iran. Among them, 55 MBL-producing P. aeruginosa strains were isolated from 55 patients hospitalized in burn unit. Minimum inhibitory concentrations (MICs) and MBLs were determined by the E-test method. Results: Of the 55 burn cases, 29 (53%) were females and 26 (47%) males. Injured burn patients’ ages ranged from 16 to 87 years, with maximum number of cases in the age group of 16 to 36 years (n, 40; 72.7%). Overall, 32 cases were accidental (60%), and 22 were suicidal burns (40%). Of the 55 burn patients, 17 cases were expired (30%). All deaths were due to chemical exposures. In antibiotic susceptibility testing by E-test method, ceftazidime was the most effective one and 35 isolates (63.5%) were resistant to all the 11 tested antibiotics. Conclusions: Routine microbiological surveillance and careful in vitro testing of antibiotics prior to prescription and strict adherence to hospital antibiotic policy may help to prevent, treat, and control MDR and pandrug-resistant (PDR) P. aeruginosa strains in burn units
    corecore