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Abstract This paper is devoted to an investigation of non-
linearly charged dilatonic black holes in the context of grav-
ity’s rainbow with two cases: (1) by considering the usual
entropy, (2) in the presence of first order logarithmic cor-
rection of the entropy. First, exact black hole solutions
of dilatonic Born—Infeld gravity with an energy dependent
Liouville-type potential are obtained. Then, thermodynamic
properties of the mentioned cases are studied, separately. It
will be shown that although mass, entropy and the heat capac-
ity are modified due to the presence of a first order correction,
the temperature remains independent of it. Furthermore, it
will be shown that divergences of the heat capacity, hence
phase transition points are also independent of a first order
correction, whereas the stability conditions are highly sen-
sitive to variation of the correction parameter. Except for
the effects of a first order correction, we will also present
a limit on the values of the dilatonic parameter and show
that it is possible to recognize AdS and dS thermodynamical
behaviors for two specific branches of the dilatonic param-
eter. In addition, the effects of nonlinear electromagnetic
field and energy functions on the thermodynamical behav-
ior of the solutions will be highlighted and dependency of
critical behavior, on these generalizations will be investi-
gated.
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1 Introduction

Albeit there extremely successful consequences of Einstein’s
theory of gravity, there are various issues which signal that
this theory should be modified, at least at high energy regime.
Regarding the physical processes at energies of order of the
Planck scale, one is expected to modify Einstein gravity to
a quantum theory of gravity which is related to quantum
field theory and could be the correct framework to describe
processes at ultraviolet (UV) energies. Considering the UV-
completion regime of black holes, the gravitational interac-
tion at energies exceeding the Planck mass implies that the
UV-completion must be achieved by new quantum degrees of
freedom of wavelength much shorter than the Planck length.
However, it is expected that one might recover the semi-
classical (thermodynamical) behavior of black holes in the
mean-field approximation [1,2]. Horava—Lifshitz gravity [3]
is one of the interesting UV modifications of general relativity
(GR), in which reduces to GR at infrared (IR) limit. Based
on Lifshitz scaling for space and time, different attractive
subjects have been considered such as string theory of types
IIA and IIB [4,5], AdS/CFT correspondence [6-8], dilatonic
black holes/branes [9—13] and phase transitions/geometrical
thermodynamics of black holes [14—16].

On the other hand, another point of view regarding the UV-
completion of GR is related to gravity’s rainbow [17,18]. In
order to introduce the gravity’s rainbow, we can start from its
historical origin; doubly special relativity. It is well known
that the special theory of relativity is based on two postu-
lates [19]; (1) the laws of physics are invariant in all inertial
frames, and (2) the constant invariant speed of light in the
vacuum for all observers, regardless of the relative motion
of the light source. This results in the fact that the speed of a
massive particle cannot be equal to or larger than the speed
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of light. Based on high energy point of view, if one consider
an upper bound for the energy of a test particle and add this
assumption as a postulate to the others mentioned above, the
doubly special relativity will be constructed [20-22]. So, in
this manner, the energy of test particle cannot be greater than
the Planck energy. Following the gravity supplementing spe-
cial relativity which leads to GR, one can generalize doubly
special relativity in the presence of gravity to obtain the so-
called doubly general relativity or gravity’s rainbow [18].

Another way for constructing such theories is consider-
ing a modification of the standard energy-momentum rela-
tion. The modification of usual energy-momentum relation
in gravity’s rainbow is given as

E? f*(e) — p*g*(e) = m?,

where E and E, are the energy of a test particle and the
Planck energy, respectively, and they are related; we have ¢ =
E/E,inwhich ¢ < 1, because the energy of a test particle £
cannot be greater than E, [23]. The functions f (¢) and g (¢)
are called rainbow functions. They are phenomenologically
motivated and could be extracted by experimental data [24];
see Refs. [17,25,26] for more details. It is worthwhile to
mention that the rainbow functions are required to satisfy
Eli_rPOf (¢) = 1 and 81i_r)nog (¢) = 1, where these conditions
ensure that the modified energy-momentum relation reduces
to its usual form in the IR limit. It is worth mentioning that
such a justification is based on the standard model of particle
physics. Since quantum theories of gravity are different from
classical one in high energy regime, a full quantum theory has
to be valid in UV regime. It is notable that both the Horava—
Lifshitz gravity and gravity’s rainbow are valid in the UV
regime. On the other hand, considering suitable choice of the
energy functions, the Horava—Lifshitz gravity can be related
to the gravity’s rainbow [27]. For the reasons mentioned, we
consider the gravity’s rainbow in this paper.

Recently, there has been a growing interest in gravity’s
rainbow because of its interesting achievements in the con-
text of theoretical physics, such as providing possible solu-
tions for information paradox [28,29], admitting the usual
uncertainty principle [30,31], the existence of remnants for
black holes after evaporation [32,33], and absence of black
hole production at LHC [34]. In addition, from cosmological
point of view, it is possible to remove the big bang singu-
larity by using gravity’s rainbow [35-38]. Black hole ther-
modynamics in the presence of gravity’s rainbow coupled
to (non)linear electrodynamics has been discussed in the lit-
erature [39-41]. Moreover, the effects of rainbow functions
on the thermodynamics properties and phase transition of
black holes have been studied in Gauss—Bonnet gravity [42],
Kaluza—Klein theory [43], massive gravity [44], and F(R)
theories of gravity [45,46]. In the view point of astrophysics,
the structure of neutron stars have been investigated and it
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is found that by increasing the rainbow function more than
one, the maximum mass of neutron stars increases [47,48].

Regarding various aspects of black holes in the context of
gravity’s rainbow, it will be interesting to look for possible
coupling of rainbow functions with scalar field and its self
interacting potential. Astronomical observations indicated
that our Universe has an accelerated expansion [49,50]. Ein-
stein gravity cannot explain such acceleration. In this regards,
various modifications of Einstein gravity are proposed in the
literature. Among them, scalar tensor gravity and string the-
ory are most acceptable ones with interesting properties. It
is worth mentioning that the low-energy limit of effective
string theory could lead to appearance of a dilaton scalar
field [51,52] which motivates one to investigate GR coupled
with such a scalar field. In addition, dilaton field coupled with
other gauge fields has significant effects on the solutions [53—
56]. In Ref. [57], it was shown that dilaton field can be an
appropriate candidate for dark matter. In addition, in order to
have deep picture regarding the nature of dark energy, a new
scalar field can be added to the field content of original theory
[58,59]. Also, GR coupled with a dilaton field can explain
the accelerated expansion of our Universe, properly. More-
over, it was shown that in the presence of dilaton scalar field,
the asymptotic behavior of black hole spacetimes is neither
flat nor (a)dS [60—64]. This is due to the fact that in the limit
r — 00, the effects of dilaton field is still present. Besides,
it was shown that the dilatonic black hole solutions can be
constructed in the (a)dS spacetime background [65]. Black
objects in the presence of dilaton gravity and their thermody-
namics have been studied in Refs. [66—75]. Recently, consid-
ering the dilaton field, the hydrostatic equilibrium equation
of compact objects has been obtained and the properties of
neutron stars have been analyzed in Refs. [76,77]. The evap-
oration of quantum black holes has also been investigated
using two dimensional dilaton gravity [78,79]. In addition,
there is a strong motivation to study rainbow deformation of
geometries that occur in the string theory.

Nonlinear field theory is one of the most interesting
branches in physical sciences because most physical systems
presented in the nature are nonlinear. On the other hand, the
existence of some limitations in the linear Maxwell theory
motivates one to consider nonlinear electrodynamics (NED)
[80-83]. One of the main advantages of considering NED
theories comes from the fact that these theories are richer
than the linear Maxwell theory and in some special cases they
reduce to the Maxwell field. Besides, it was shown that NED
can remove the black hole and big bang singularities [84—
86]. In addition, the effects of NED become quite important
in superstrongly magnetized compact objects [87,88]. Study-
ing general relativity coupled to NED is an attractive subject
because of its specific properties in gauge/gravity duality.
One of the most important NED theories is so-called Born—
Infeld NED (BI NED) which has been introduced by Born
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and Infeld in 1934 [89]. This interesting type of NED removes
the divergence of electric field of a point-like charge and such
a property was the main motivation for introducing this kind
of NED. Other strong motivation for considering BI NED
comes from the fact that it naturally arises in the low-energy
limit of open string theory [90-93]. We have the following
incomplete list showing the investigation of: gravitational
fields coupled to BI NED for static black holes [94-101],
wormholes [102, 103], rotating black objects [104, 105], and
superconductors [106].

Motivated by these applications, in this paper, we analyze
dilaton field using the formalism of gravity’s rainbow in the
presence of BINED. So in the present paper, we are going to
study the dilatonic black hole solutions in Einstein gravity’s
rainbow coupled to BI NED with considering the effects of
thermal fluctuations.

2 Black hole solutions of dilaton gravity’s rainbow in
the presence of BI NED

Here, we are interested in dilatonic charged black holes in
the context of gravity’s rainbow with BI source. Since we are
interested in minimal coupling, the action can be written as
[61]

1
] = —

- d4xy—g [R—z(vq>)2—v (®)—L (F, @)],
167

ey

where R is the Ricci scalar, and ® and V(®) are, respec-
tively, dilaton field and its corresponding potential. L(F, ®)
is the Lagrangian of the BI electromagnetic field under con-
sideration with the following explicit form:

2 2ad e Ha®
L(F,®)=4 L= 1+ —— . 2
( ) Be 252 (2)

where the Maxwell invariant is denoted by F' = F,, F*"
(Fyy = 9,Ay — 0yA, in which A, is the gauge potential).
Also, B is the nonlinearity parameter and dilatonic constant
is identified by «, which is a parameter for determining the
strength of coupling between the scalar field and electrody-
namics.

For the sake of simplification in calculation, we use the
following redefinition:

L(F, ®) =4p%*®L(Y), )
where L(Y) =1—+/1+YandY = %.

Variation of the action (1) leads to the following field equa-
tions:

Ry =2 (aﬂq>avq> + %V@))

— 4729y L (Y) Fyy F

+28%e**® [2Ydy L (Y) — L (Y)] g0 “
Vo= L0V upe e pyay Ly L. )
490 Y ’
v, (e*Z“‘DaYL (Y) FW) —0. (6)

Here, we consider the following energy dependent line
element:

42 = — 20 gy
() g% (e)
dr? + 2R3 (r)d2? 7)
X m r r x| (

in which R(r) and W(r) are metric functions which should
be determined. We recall that these two functions g(¢)
and f(e) are energy (or rainbow) functions that are cho-
sen phenomenologically. In addition, d Q,% is the metric of
two dimensional subspace which depends on topology of
the boundary of spacetime and could have positive (elliptic
k = 1), zero (flat k = 0) or negative (hyperbolic k = —1)
curvature such as

do? +sin® 0dg?, k=1

d6? + sinh? 0de?, k = —1 . (8)
do? + de?, k=0

dQ} =

Since we are interested in black holes with radial electric
field, the suitable choice of gauge potential is

Au=8Lh(r), 9)
which by using Eq. (6), we can obtain the following field
equation:
24 [R(r) (raF o —LF _F )—rF R’(r)]
tr 5l tr tr
+ fHe)g* () FL[R(r) +rR ()] = 0, (10)

where F; = A} is the rr-component of the electromagnetic
tensor field and prime denotes d/dr. Solving Eq. (10), we
obtain

q62a<b

272 200)
2R ()1 + L os

where ¢ is an integration constant which is related to the total
electric charge of the solutions. In order to find the metric

Fiy = Y

@ Springer



647 Page4dof 17

Eur. Phys. J. C (2017) 77:647

functions, we consider the following modified version of the
Liouville-type dilaton potential:

2

ka” 5. 2 2a®
———g7(e)e @ +2Ae™*7,
b2®_1,1g (e)e @ +2Ae

V(d) = (12)

where A is a free parameter which plays the role of cos-
mological constant. It is worthwhile to mention that in IR
limit (g(e) = f(¢) = 1), Eq. (12) reduces to the known
Liouville-type dilaton potential that is employed for finding
Friedman—Robertson—Walker scalar field cosmologies [107]
and Einstein—-Maxwell-Dilaton black holes [61,108].

Here, we consider R(r) = ¢*®) as an ansatz for find-
ing the metric function. This ansatz is supported by studies
conducted in Einstein—-Maxwell-Dilaton gravity [109].

Now, by using Egs. (4), (5) and the metric (7) with obtained
electromagnetic field tensor, one can find the following dif-
ferential equation for calculating the metric function, analyt-
ically:

kr2a? (b ﬁ+r®],1w’(r>—®4,1wr> (Y
b2®_1’1 r 6%1 r

22 b\ A

5= (2) [+ +5 =0 a3
g (&) \r 2

where ©; ; = i + ja?, n = %ﬁfz(s) (%)zy and y =

2a%/©1.1. Using obtained field equations, one can find both

the metric function and the dilatonic field in the following

forms:

® b\~ A®% bY
() =— “k(-) _m oL 2T e
r

O_11 \r =y " g2(e)0_3,
26202 b7 r7)
- [l - Hil, (14)
g“(e)®_3,1
@ “ (? 15
(r) = o n(r), (15)

where H = 2 F1([— 4. 211, [Z:1], —p) is the hypergeo-

metric function. Also, b is an arbitrary constant related to the
scalar field and m is an integration constant which is related
to total mass of the solutions. It is worthwhile to mention that,
for the limiting case of 8 — o0, obtained metric function
will lead to

W) = _k@l‘l <r)3/ _m

O_11 \b ri=v
AOT BT g2 fe)?e)y (i)y (16)
82()0_3 r? b/’

which is charged black hole in gravity’s rainbow [110]. On
the other hand, for limiting case of « = y = 0and 8 — o0,
our solutions reduce to

@ Springer
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a =09, f(e) = g(e) =0.9,8 = 0.1 (continues line), 8 = 0.3 (dotted
line), B = 0.534 (dashed line) and 8 = 0.7 (dashed-dotted line)

\y(r)zk_ﬁ_é 2 M
-

3 g%(e) r?
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which is the metric function of 4-dimensional asymptotically
AdS topological charged black hole in gravity’s rainbow [46].

In order to study the effects of matter fields as well as
dilatonic gravity, we will investigate the behavior of the
Kretschmann scalar for small and large values of radial coor-
dinate. The existence of divergence for this scalar means that
our solution contains a curvature singularity. If this singular-
ity is covered with a horizon, obtained solution is interpreted
as black hole. It is a matter of calculation to show that, for
this black hole, we have

_4(;‘)271
, 12A2(e* — 202 +2) [b\Y
rll)ngo RagwR“ﬂ“" - ®% 1 (;) . (19

Itis evident from Eq. (18) that there is an essential singularity
located at the origin for this solution. Therefore, the first
condition for having black hole is satisfied. On the other
hand, the asymptotical behavior of system is modified due
to dilatonic gravity and it is not (A)dS. It is notable that the
existence of horizon for the solution is investigated through
following diagrams (Fig. 1).

Plotted diagram shows that depending on the choices of
different parameters, obtained solutions may present black
holes with two horizons, extremal black holes and naked
singularity. For exampe, in the case of BI theory, for small
values of the nonlinearity parameter observed behavior is
Schwarzschild like (continues line of Fig. 1). Increasing non-
linearity parameter will change the behavior of the metric
function into Rissner—Nordstrom like which may yield two
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horizons (dotted line of Fig. 1), extremal black holes (dashed
line of Fig. 1) or naked singularity (dashed-dotted line of Fig.
1). Here, we saw that generalization to nonlinear electrody-
namics as well as gravity’s rainbow, provided a richer phe-
nomenologies for black holes. We see that geometrical struc-
ture of the black holes have been modified due to these gener-
alizations. Depending on the choices of different parameters,
the type of singularity, the general behavior of metric func-
tion and number and type of horizons have been modified.
These modifications highlight the contributions of this mat-
ter field and gravities. We will continue to study the effects
of these generalizations on conserved and thermodynamical
quantities in the next section.

3 Thermodynamics
3.1 Usual thermodynamics (non-correction)

This section is devoted to the calculation of conserved quan-
tities without thermal fluctuations. Here, we investigate the
effects of gravity’s rainbow, dilaton scalar field and nonlinear
BI electrodynamics on the thermodynamical quantities and
check the validity of the first law of black hole thermody-
namics. Using the concept of surface gravity, one can show
that the Hawking temperature for obtained solutions will be

Y 2 -2y
O1,1 (%) [@)1,—1& B-%)- M (i> - 01 1BriJTF n+}

where for nonlinear BI theory we obtain

q 1 O Os,1
U=-,F — % : ) : s T . 24
r21<[ 5 4] [4] ’7+) (24)

In order to obtain the total mass of black holes, one can use
the definition of Abbott and Deser [111-113], which leads
to

M = Lm (25)
8 O1,1f(e)g(e)

It is worthwhile to mention that, for the IR limit (g(¢) =

f(e) = 1) and by setting « = 0, Eq. (25) reduces to the

mass of Einstein-Maxwell black holes.

Now, we are in a position to examine the validity of the
first law of thermodynamics. To do so, first, we should obtain
geometrical mass of the solutions, m, as a function of other
parameters, by using W (r =r;) = 0. Then, by replacing
it in Eq. (25), we obtain a relation for the total mass of the
black holes versus entropy and electric charge. In this case,
the extensive parameters will be the entropy and total elec-
tric charge and their corresponding conjugating quantities
are the temperature and the electric potential, respectively.
Therefore, the validation of the first law of black holes ther-
modynamics is done by

'
T = , (20)
2m 01 114 f(e)g(e)
where ny = Moy, - Since we are working in an FEin- oM oM
stein framework, the entropy of these black holes could be (ﬁ) 0 =T& (@ )S =U. (26)

obtained by the area law

Y
goa_ ) () 1)
4 4k

in which by setting « = 0 and g(¢) = 1, the entropy of
black holes in Einstein gravity is recovered. In order to find
the total electric charge of these black holes, one can use the
Gauss’ law, which leads to following result:

qf ()
0= . (22)
4mg(e)
The electric potential of the black holes at the horizon radius
with respect to spatial infinity as a reference could be calcu-
lated with the following relation:

Ur)= Aux"|, o — Aux" ey (23)

It is a matter of the calculation to show that obtained quanti-
ties in Eq. ( 26) are exactly the same as those obtained in Eqs.
(20) and (24). Therefore, we find that the first law is valid as

av = (M) as o (2 4 27
-(5), 5+ (5g) e e

Our final subject of the interest in this section is heat capacity.
The information that are provided by this quantity could be
used to render the thermodynamical structure of black holes
in the context of their thermal stability/instability. In addi-
tion, the existence of discontinuity for this quantity signals
the presence of thermal phase transition. It is worthwhile to
mention that the discontinuities in the heat capacity usually
are observed in the form of divergences. For black holes in
canonical ensemble, the heat capacity is calculated by the
following relation:

@ Springer
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N
c=rT <—) , (28)
aT /

in which, by using the obtained temperature (20) and entropy
(21), one can find it for these specific thermodynamical quan-
tities:

4 (b \ | k@ (b7 2.2
() [ () e

C =

ko2
©-118%() [ri (#@b))n +2r% (B2 - %)) e — 2%t —
J—1.1

r

The thermodynamical stability and possible phase tran-
sition of the black holes in this case will be discussed
in the following sections. In the next section, we will
obtain the thermodynamical quantities for the case where
entropy is corrected so as to include a logarithmic correc-
tion.

3.2 Thermal fluctuations: correction

Here, we want to investigate the effects of thermal fluctua-
tions on obtained solutions. Consideration of thermal fluctu-
ations results into modifications of different thermodynam-
ical quantities, though some of the quantities remain fixed.
To the leading order, the entropy gets logarithmic correction
and given by

S=S)— %log (SOTZ) , (30)

in which Sy is the uncorrected entropy which is given in Eq.
(21). Also, ¢ is the thermal fluctuation parameter which we
will call it correction parameter through the paper. Using
Egs. (20) and (21), we can obtain the corrected entropy as

),

_ _¢
5= 40w 28| agke

Our investigation regarding surface gravity confirms that
the temperature is one of the thermodynamical quantities
which is not affected by the presence of a first order cor-
rection. In other words, for this case, the obtained tem-
perature will be same as that was previously obtained
(20). Using the corrected entropy (31) and the temperature
(20), we are able to compute the Helmholtz free energy
as

@ Springer

Feo / SdT = — ! / IiLdre = 3y
- Clenfe)ge) ) rvTHny
where
-4
) (29)
2(")1.142]"2(8)%2(8)
o)
371/
b
=1 01
. 2g%(e)¢ (”) ' 20 T
=t ln<[4ﬂf(8)g2(€) (ﬁ eV

2| b y
(%)
ke?(e) (BT 1t o, ?
— —Fep2-aA ,
e\ p (2P )
M = 2T o) + 72

b\
x(—) @_1,1(2,32_1\)}
r+

b\
-2 [®1,1f2(8)g2(8)612 + 01187 (Z) } :

Now, by using the obtained Helmholtz free energy and
employing its relation with mass, M = F 4 TS, one can
calculate the corrected mass in the following form:

_ ry 10Oy
167 f ()83 (6)O_1,1

b\
x | kg?(e) + 28220 1 (-)
r+

M=F

b\
xVT+ns =120 1, (Z) (2/32—1\)] (33)

We obtain the electric charge (Q) and the electric (chemi-
cal) potential (U), which are similar to Egs. (22) and (24),
respectively. Therefore, by using the obtained thermody-
namic quantities, the first law of black hole thermodynamics
satisfy as

dM = TdS + UdO. (34)

Finally, the heat capacity of this case is of interest. It is a
matter of calculation to obtain this quantity by using Eqgs.
(20) and (31) with (28) as
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s (b \ | k2@ (b\7¥ 2.2 2 (p2 _ A
r (E) [2@1,1 <H> "'/6r+’7+_r+(/3 _7) N+

ds +
c=1(=) =
O_1,18%(e) |3

o (%)

ka2 ()
|2 (e 2001 (7 ) -

2
O o2 (2 %>) e =287} -

2®1,1q2f2(8)g2(8)]

2y
o-(2)

2.2 2 2
2 (@2,1,32ri + L E)g(E) (‘25 (6))

b
(%) ' 35)

®,],]g2(8) r_2~_ (

()

ko2
T

201,19° f2(e)g*(e)

2y
o-ua(2)

Let us highlight some important properties of the obtained
heat capacity in the presence of a first order correction. First
of all, the effects of a first order correction are observed
only in the numerator of the heat capacity which indicates
that divergences of the heat capacity, hence phase transition
points are independent of first order correction. On the other
hand, since the first order correction is present in numerator,
it is expected that roots of the heat capacity and stability con-
ditions are first order correction dependent. The contributions
of a first order correction and differences between correction
and non-correction cases will be discussed in detail in the
next section.

3.3 Thermal structure: comparison between correction and
non-correction

In this section, the main goal is to understand the possible
scenarios regarding thermal structure of the black hole solu-
tions. Since we have obtained thermodynamical properties in
the context of both first order correction and non-corrected
solutions, we will give details in the context of both of them.
Furthermore, we also investigate the details of contribution
of the first order correction.

The obtained temperatures for the correction and non-
correction cases are the same. On the other hand, from the first
law of thermodynamics, we can see that the temperature is
calculated as a function of fluctuation in internal energy with
changes of the entropy. This shows that change in entropy
due to variation of the correction parameter results in mod-
ifications in internal energy on a level that the temperature
of this system remains fixed. In other words, modifications
of the entropy is realized by internal energy in a manner that
the temperature remains fixed. This provides us with a tool
to increase/decrease the entropy and internal energy without
any concern regarding the possible changes in the tempera-
ture. This is in a manner, isothermal like behavior, although
further tests are required to establish the isothermal nature of
this property.

Returning to the obtained temperature, one can recognizes
specific properties forit: (1) obtained temperature provides us
with imposing a limit on the values that dilatonic parameter

could acquire (o« # 1). Such limitation prevents temperature
to have divergent value, (2) using this limit, one can see that
essentially two branches exist for the dilatonic parameter,
hence for the temperature: @ > 1 and @ < 1. This is due to
fact that the signature of different terms in the temperature
would be opposite for these two cases. Only exceptions are
the cosmological constant and purely nonlinear terms. Later,
we will show how these two branches give different pictures
regarding the thermodynamics of these black holes, (3) dila-
tonic parameter is coupled with all presented terms in the
temperature. This shows that dilatonic gravity has profound
effects on the behavior of the temperature, hence thermody-
namical structure of the black holes.

Now, in order to investigate the behavior of the tem-
perature, we have plotted various diagrams for variation
of dilatonic parameter, «. As was pointed out, we have
divided the effects of dilatonic parameter into two branches
of @ < 1 (left panel of Fig. 2) and o > 1 (left panel of Fig.
3).

First, we investigate &« < 1 case. Evidently, depending
on the choices of dilatonic parameter, the temperature could
have different properties such as: (1) the existence of one root
and being increasing function of the horizon radius (continu-
ous and dotted lines in left panel of Fig. 2). (2) the existence of
one root and one extremum (dashed line in left panel of Fig.
2). (3) existence of one root and two extrema (dashed-dotted
line in left panel of Fig. 2). Evidently, for small values of
the dilatonic parameter, the contribution of scalar field is not
significant and general behavior of the temperature is simi-
lar to the absence of this parameter. Increasing the dilatonic
parameter leads to formation of an extremum. Further incre-
ment leads to existence of two extrema: a maximum and then
a minimum in which maximum is formed in smaller horizon
radius comparing to minimum. The extrema in temperature
are matched with divergences in the heat capacity. Therefore,
one can conclude that in the case of &« < 1, increasing the
dilatonic parameter leads to introduction of critical behav-
ior in thermodynamical structure of the black holes. Later in
studying the heat capacity, we will give more details regard-
ing the types of critical behavior that could exist for these
black holes.
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Let us now turn our attention to the case of « > 1. Inter-
estingly, for small values of the dilatonic parameter, the tem-
perature is negative valued everywhere (continuous line in
left panel of Fig. 3). This indicates that our solutions are
thermodynamically non-physical. It is worthwhile to men-
tion that, for this case, the temperature enjoys a maximum
in its structure. The maximum value of the temperature is
an increasing function of dilatonic parameter. For specific
value of dilatonic parameter, one can find a root for the tem-
perature (dotted line in left panel of Fig. 3). The root is an
extreme point, but then again, we should point out that except
for the root, the temperature is negative everywhere. Increas-
ing dilatonic parameter more than this specific value leads
to formation of two roots for the temperature (dashed and
dashed-dotted lines in left panel of Fig. 3). The maximum
is located between these roots, which shows that the phys-
ical black holes could only be observed for medium black
holes. Whereas, for small and large black holes, the tem-
perature is negative valued and solutions are thermally non-
physical.

@ Springer

The behavior that we observed in plotted diagrams foro <
1 case actually shows the existence of subcritical isobars.
Presence of subcritical isobar, so far has been reported only
for AdS black holes. On the other hand, the behavior that we
observed for temperature in o > 1 case was similar to the one
that previously was reported for dS black holes. These two
specific properties confirms a very important result regarding
the dilatonic parameter: for « < 1 case, thermodynamical
behavior or temperature of black holes is AdS like while for
o > 1 case, this behavior is dS like. This indicates that in
general, for o < 1, the black holes have AdS like behavior
while for the « > 1 the behavior is dS like. If one is interested
to study the AdS/CFT duality in the context of these black
holes, the valid branch is where o < 1.

Now, we turn our attention to the heat capacity which
contains information regarding thermal stability and possible
phase transition points. Unlike temperature, the heat capac-
ity could be correction dependent. In other words, consider-
ing the first order correction to the entropy, the heat capac-
ity would be modified. Interestingly, the effects of correc-
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tion could be observed in the numerator of the heat capacity
while its denominator is independent of it. This confirms two
important things regarding the effects of first order correc-
tion: (1) The phase transition points that are realized through
divergences in the heat capacity are not affected by the first
order correction. In other words, the first order correction has
no effect on phase transition points. (2) In the usual black
holes without the first order correction, the heat capacity and
the temperature have the same roots. But since the numerator
of the heat capacity in the presence of a first order correc-
tion is modified, temperature and the heat capacity no longer
share the same roots. This modifies the conditions regarding
thermal stability of the solutions.

We recall that in the case of « < 1, the behavior is AdS
like. For this case, there exists a critical value for dilatonic
parameter, say o (c stands for “critical”’) which could be used
to divide possible scenarios available for the heat capacity.
For 0 < @ < «, the effects of dilatonic gravity is signifi-
cant on the place of the root of the heat capacity. Before the
root, the heat capacity is negative and solutions are thermally
unstable while after it, the opposite is seen and solutions are
thermally stable (see continuous and dotted lines in the mid-
dle panel of Fig. 2). This shows that, for small values of the
dilatonic parameter, region of stability is modified. At the
critical value (¢ = «), the heat capacity acquires a diver-
gence which is interpreted as critical behavior (dashed line
in the middle panel of Fig. 2). The sign of the heat capac-
ity around this divergence point is positive which indicates
that the critical characteristic takes place between two stable
phases, as expected. In this case, the heat capacity enjoys a
root as well, and it is located before the divergence. Finally,
for o, < o < 1, the heat capacity has two divergences in its
structure (dashed-dotted line in the middle panel of Fig. 2).
Between the divergences, the sign of the heat capacity is neg-
ative which shows that solutions are thermally unstable. This
indicates that there is a phase transition taking place between
two divergences. Therefore, the only stable phases provided
for the black holes in this case are small and large black
holes while the medium black holes suffers thermal instabil-
ity. It is worthwhile to mention that before the smaller diver-
gence, there also exists a root for the heat capacity. Before this
root, the temperature is negative, therefore solutions are non-
physical. The behavior that we observed for the heat capacity
here completely matches to the one that was observed for the
heat capacity of AdS black holes (see the appendix for more
details). This confirms that thermal stability structure of these
black holes in the case of &« < 1 is the same as for AdS black
holes. This provides us with further proof to recognize the
branch o < 1 as AdS spacetime.

In case of @ > 1, the general behavior in the temperature
was dS like. Here, it is possible to divide the general behavior
of the heat capacity into three groups by a specific value of
o, say o, (er stands for extreme root). For 1 < o < .,

the heat capacity has only one divergence in which the heat
capacity switches from negative to positive (continuous line
in middle panel of Fig. 3). This case has negative temperature
everywhere. Therefore, although the heat capacity signals the
existence of stable state, the negative temperature shows that
no physical solution exists in this case. This highlights the
importance of studying the temperature alongside of the heat
capacity to separate physical solutions from non-physical
ones. For ¢ = «,,, interestingly no divergence is observed
for the heat capacity, although the temperature gives us the
detail of its existence by having a maximum (dotted line in
left and middle panels of Fig. 3). In this case, the tempera-
ture is negative valued everywhere except at its root which is
an extreme one. But the heat capacity in this case shows the
existence of only one root which after it, the heat capacity is
positive valued. The absence of divergence in heat capacity
is due to the fact that extremum and root of the temperature
are identical. Considering the relation for the heat capacity
(28), it is obvious that no divergence could be observed for
the heat capacity in this case. Finally, for o, < «, the heat
capacity enjoys two roots with a divergence located between
them (dashed and dashed-dotted lines in the middle panel
of Fig. 3). Between smaller root and divergence, and after
the larger root, the heat capacity is positive. Whereas, before
smaller root, and between divergence and larger root, the heat
capacity is negative and solutions are thermally unstable. But
we should remind the reader that the only physical region
for this case is between two roots (positive T'). Therefore,
there is one physical stable phase and a physical unstable
one around divergence and small black holes are stable. The
behaviors that we have observed for the heat capacity in this
case (¢ > 1) is exactly the same as the one that was observed
for dS case (see the appendix for more details). Therefore, this
confirms the analogy of consideration of & > 1 as dS case.

Now, we give more details regarding the effects of first
order correction on the thermodynamical behavior of the
solutions. To do so, we have considered different behaviors
that were reported for the heat capacity before and study the
effects of variation of the first order parameter, ¢.

In brief, we should note that, for « < 1, we had three
cases for the heat capacity: (1) the existence of only one
root (0 < o < «); for this case, the variation of correction
parameter leads to modification in place of the root which is
an increasing function of ¢ (upper-left panel of Fig. 4), (2)
the existence of one root and one divergence (o« = «.); for
small values of the first order correction parameter, ¢, the
place of the root is modified to larger values, but the sign of
the heat capacity around divergence point remains positive.
Interestingly, for sufficiently large values of the correction
parameter, the place of the root will be shifted to after the
divergence and the sign of the heat capacity before it and
also around divergence point will be negative (up-middle
panel of Fig. 4). Therefore, the only thermally stable phase
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is after the root and around the divergence point, phase tran-
sition is between two unstable black holes, (3) the xistence
of one root and two divergences (¢, < «); in this case, for
small values of the correction parameter, the place of root
is modified to larger values of the horizon radius but before
the divergences. The stability conditions remain unchanged.
But for medium values of the correction parameter, the root
will be located between the divergences (upper-right panel of
Fig.4). Interestingly, before smaller divergence, and between
the root and larger divergence, the heat capacity is nega-
tive. Whereas, between the root and smaller divergence, and
also after the larger divergence, the heat capacity is positive
(dashed and dashed-dotted lines in the upper-right panel of
Fig. 4). Increasing the value of correction parameter leads
to root being place after the larger divergence. In this case,
the only stable phases (positive heat capacity) are between
the divergences and after the root (bold continuous and bold
dotted lines in the upper-right panel of Fig. 4).

Fora > 1, we only consider the physical case in which the
temperature has two roots and between them, the temperature
has positive values. Evidently, the contribution of the first
order correction results in a modification of the place of the
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(dashed-dotted line), ¢ = 7 (bold continuous line) and ¢ = 8§ (bold
dotted line). Left panel: &« = 0.5; middle panel: « = 0.79883; right
panel: « = 0.81

root for the heat capacity to higher values of the horizon
radius. The root will be located after divergence (up panels
of Fig. 5). Before root (around the divergence point as well)
the heat capacity is negative. The positive heat capacity could
be observed after its root. But the root of the heat capacity
is located after the larger root of the temperature, therefore,
even though the heat capacity changes its sign to positive after
its root, but it is within non-physical region. This results in
the conclusion that the existence of the first order correction
for this case leads to instability of the black holes within the
physical region. We see that contribution of the first order
correction destabilizes the solutions.

Our next study here is measuring the modifications in
entropy by studying the fluctuation in the temperature. To
do so, we have plotted diagrams for both cases of « < 1 and
a > 1 corresponding to those plotted for the temperature
and the heat capacity. In addition, we have plotted other dia-
grams to understand the effects of first order correction on
the thermodynamical behavior of the entropy as a function
of the temperature.

For « < 1, which is interpreted as the AdS case, evi-
dently, three distinctive behaviors could be observed for the
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entropy. These behaviors could be divided and addressed by
o, which was introduced before in the context of the heat
capacity. ForO0 < o < «, the general behavior of the entropy
is not modified on a significant level. Here, entropy is an
increasing function of temperature (continuous and dotted
lines inright panel of Fig. 2). By setting @ = o, an extremum
is formed for entropy versus temperature diagrams (dashed
line in right panel of Fig. 2). This case corresponds to the
cases where the temperature and the heat capacity enjoy an
extremum and divergence, respectively, in their structures.
Therefore, one can conclude that the entropy of extremum
point is the critical entropy where the system has a thermal
phase transition. Increasing the dilatonic parameter to reach
the region of o, < o results in the formation of two extrema
which could be recognized by 77 and 7, (dashed-dotted line
in right panel of Fig. 2). Between these two indications, the
temperature is a decreasing function of the entropy and for
every temperature, there exist three different entropies. For
T = Ti, T, every temperature has two specific entropies.
This case corresponds to the existence of two divergences in
the heat capacity. The thermodynamical principle informs us
that system is in favor of increasing its entropy. This indicates
that, for the case where three (two) entropies are available
for temperature, the system moves to the case which has the

0.025 0.050 0.075

highest entropy. This is indeed the characteristic behavior of
the phase transition. Therefore, we see that measurement of
the entropy as a function of the fluctuation of the temper-
ature provides us specific characteristic that enables us to
recognize critical behavior.

For ¢ > 1, which is interpreted as the dS case, we see
that, for the non-physical case where the system has the neg-
ative temperature, the entropy is positive valued (continuous
line in right panel of Fig. 3). Increasing dilatonic parameter
leads to temperature acquires an extreme root where, interest-
ingly, entropy has a positive and non-zero value (dotted line
in right panel of Fig. 3). Increasing the dilatonic parameter
furthermore leads to formation of a region of positive tem-
perature with a maximum provided for temperature (dashed
and dashed-dotted lines in right panel of Fig. 3). In this case,
except for the maximum, every temperature has two differ-
ent entropies. The maximum of the temperature is where the
system acquires divergence in its heat capacity. Now remem-
bering that for the system one desires higher values of the
entropy, we can see that characteristic phase transition behav-
ior is observed by system jumping from smaller entropy to
larger one at the same temperature. Interestingly, even for
vanishing temperature, there are two values provided for the
entropy of system.
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Now, let us focus on the effects of a first order correction.
As was pointed out, the case o < 1 (AdS case) enjoys larger
number of the possibilities in its structure depending on the
value of dilatonic parameter. For more conclusive discussion
regarding the results of a first order correction, we study the
effects of variation of the correction parameter for different
cases provided o < 1 and for the physical case observed in
o > 1 separately.

()For0 < o < acinthecaseof o < 1, we see thatadding
first order correction results in the formation of a minimum
for entropy, Smin (lower-left panel of Fig. 4). In addition,
for vanishing temperature, entropy is positive and non-zero
valued, Sp. In the region Spin < S < Sp, for every entropy,
there exist two different temperatures. The minimum and Sp
are increasing functions of the correction parameter.

(2) For ¢« = «, in the case of « < 1, where an
extremum was observed in the absence of a correction term,
adding the correction results in the formation of a minimum
for the entropy alongside the extremum that was observed
before (lower-middle panel of Fig. 4). But interestingly, the
entropies of minimum and extremum points are increasing
functions of the correction parameter. Here too, similar to
the previous case, for a specific region of the entropy, every
entropy has two different temperatures. Now, remembering
that the extremum point is where the system has a phase
transition, one can conclude that the entropy of the critical
point depends on the value of the correction parameter. This
shows that the critical behavior in the presence of a first order
correction is reached for higher values of the disorder in the
system, hence for the entropy.

(3) For @, < « in the case of o < 1, as was pointed out,
two distinctive temperatures where available, 77 and 75, for
which, between them, every temperature has three different
entropies. In addition, the entropy related to 7 is larger than
the entropy corresponding to 7> (continuous line in the lower-
right panel of Fig. 4). Now, the effects of a first order cor-
rection in this case could be divided into four groups, which
are characterized by ¢1, {» and &3, in which {1 < & < &3.
For 0 < ¢ < ¢j, the general behavior of the entropy ver-
sus temperature is the same as that observed for vanishing
T with the one difference that entropies corresponding to 7
and 7 are higher than for vanishing temperature (dotted line
in the lower-right panel of Fig. 4). Increasing the correction
parameter to reach the region of {; < ¢ < {2, interestingly,
results in the formation of cycle for entropy versus temper-
ature (dashed line in the lower-right panel of Fig. 4). This
means that between 77 and 73, there is yet another tempera-
ture, 7', which has two different entropies corresponding to
it. In this case, the entropy of 77 is still bigger than entropy
of 7». If we choose the correction parameter from the region
of & < ¢ < &3, the cyclic behavior could be observed,
but interestingly, the entropy corresponding to 73 is larger
than the one related to 7 (dashed-dotted line in the lower-
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right panel of Fig. 4). This means that although the entropies
related to these two temperatures are increasing functions of
the correction parameter, but the entropy related to 7, grows
faster comparing to the one corresponding to 77. Finally, for
the region of ¢3 < ¢, the cyclic behavior vanishes, but since
the entropy of 7> is now bigger than the one related to 71, the
diagrams have opposite curves compared to small values of
the correction parameter (bold continuous and dotted lines
in the lower-right panel of Fig. 4).

(4) Finally, for the physical case observed in @ > 1, in
the absence of correction, we observed a maximum for the
temperature. Interestingly, the existence of a first order cor-
rection results in a cyclic (closed) diagram for the entropy
versus temperature (lower panels of Fig. 5). In addition, there
is a minimum obtained for the entropy which has maximum
temperature as its correspondence. In this case, for every tem-
perature (entropy) there exist two entropies (temperatures).
The minimum of the entropy is an increasing function of the
correction parameter.

In order to complete our study, we finally investigate the
effects of the nonlinearity parameter and energy functions
on the thermodynamical behavior of these black holes for
the two branches of @ < 1 (AdS case) and o > 1 (dS case).

First, we turn our attention to the nonlinear nature of solu-
tions. For case of @ < 1, evidently, the effects of nonlinear
electrodynamics could be divided into three categories with
a critical value for nonlinearity parameter, 8. (in which ¢
stands for critical). In the absence of the nonlinearity param-
eter, temperature has a minimum and it is positive valued
everywhere (continuous line in the upper-left panel of Fig.
6). In the presence of the nonlinearity parameter and for the
region of < S, the temperature enjoys a root, a maximum
and a minimum in its structure (dotted line in the upper-left
panel of Fig. 6). As for 8 = f., the number of extrema is
reduced to one which is located after the temperature (dashed
line in the upper-left panel of Fig. 6). Increasing the non-
linearity parameter beyond B, < p results in vanishing of
the extremum in the temperature, and the temperature will
be an increasing function of the horizon radius with a root
(dashed-dotted line in the upper-left panel of Fig. 6). The cor-
responding heat capacity diagram shows that the temperature
and the heat capacity have the same roots and the extrema
of the temperature are matched with divergences in the heat
capacity (compare upper-left and upper-right panels of Fig.
6). Considering this fact, one can conclude two important
points for the @ < 1 branch: (1) for small values of the non-
linearity parameter, thermodynamical structure of the black
holes enjoys the existence of phase transition, (2) increasing
the nonlinearity parameter results in the absence of the phase
transition for these black holes. It is worthwhile to mention
that, for vanishing nonlinearity parameter, since temperature
has a minimum, heat capacity has a divergence, which signals
for possible critical behavior. The sign of the heat capacity
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changes from negative to positive around divergence which
indicates a phase transition between small unstable black
holes to large stable ones. For case of « > 1, in the absence of
the nonlinearity parameter, temperature is a decreasing func-
tion of the horizon radius with a root (continuous line in the
lower-left panel of Fig. 6). In the presence of the nonlinear-
ity parameter, the temperature acquires a maximum with two
roots. The maximum and number of the roots are decreasing
functions of the nonlinearity parameter. This indicates that,
for sufficiently large values of the nonlinearity parameter, the
maximum will be relocated to negative values and roots will
be vanished (dashed-dotted line in the lower-left panel of Fig.
6). Therefore, one can conclude that, for the « > 1 branch,
the effects of increasing nonlinearity parameter result in the
elimination of physical solutions. As for the stability, inter-
estingly, in the absence of the nonlinearity parameter and in
the region where the temperature is positive, the heat capac-
ity is negative, hence solutions are thermally unstable. After
the root, although the heat capacity is positive, the tempera-
ture is negative valued. Therefore, for this case, only unstable
solutions exist. In the presence of nonlinearity parameter, if
the maximum of the temperature is located at positive values
(leading to the presence of two roots for the temperature), the
heat capacity enjoys a phase transition between large unsta-
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ble and small stable black holes (dotted and dashed lines in
the lower-right panel of Fig. 6).

The situation for the effects of the energy functions is
investigated in Fig. 7. Here, we have investigated the effects
of gravity’s rainbow for both branches of @ < 1 (up panels
of Fig. 7) and @ > 1 (lower panels of Fig. 7). Evidently, for
small values of the rainbow functions, temperature enjoys a
root and a maximum and a minimum in its structure which
correspondingly, heat capacity would have the same and
two divergences matching extrema points in the temperature
(continuous line in up panel of Fig. 7). This shows that these
black holes, for small values of the energy functions, enjoy a
phase transition over a region which is located between two
divergences of the heat capacity. The number of extrema in
temperature, hence divergence in heat capacity is a decreas-
ing function of the energy function. For a certain value of
the energy function, the temperature will have an extremum
and the heat capacity enjoys a divergence (dashed lines in up
panel of Fig. 7). In this case, a phase transition between two
stable black holes takes place. Increasing the energy function
beyond this value results in the absence of an extremum in
the temperature, hence the divergence in the heat capacity.
Therefore, the existence of the critical behavior depends on
values of the energy functions for the @ < 1 branch. As for
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a > 1,itis evident that a maximum exists for the temperature
which corresponds to a divergence in the heat capacity (lower
panels of Fig. 7). For small values of the energy function, this
maximum is within the positive valued region and the tem-
perature also enjoys existence of two roots. The maximum is
a decreasing function of f(¢) and for sufficiently large val-
ues of this energy function, it will be relocated into negative
region indicating negative temperature without root, hence
absence of physical solutions. Therefore, one can conclude
that the existence of physical solutions for « > 1 depends on
the values that energy functions can acquire.

4 Conclusion

Regarding the fact that we should consider high energy
(UV) regime near the black holes motivates us to consider
an energy dependent spacetime with a minimal coupling
between gravity, dilaton scalar field and a nonlinear U (1)
gauge field. In this paper, we have studied the black hole
solutions in dilaton gravity’s rainbow in the presence of BI
source. It was shown that the nonlinearity parameter, energy
functions and dilatonic parameter modify the type of the sin-
gularity, the places and number of horizon radii and their type
as well. These modifications highlighted the importance of
matter fields and gravities.
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Next, we obtained conserved and thermodynamical quan-
tities and we proved that despite the mortifications of the
gravity’s rainbow, dilatonic gravity and BI field, the first law
of the black holes thermodynamics is valid.

Our study in the context of the temperature and the heat
capacity provided us with interesting properties for dilatonic
parameter. First of all, we were able to impose a specific
limit on the dilatonic parameter in order to avoid a diver-
gent temperature. In addition, it was shown that, for ¢ < 1,
the characteristic behaviors of the temperature and the heat
capacity are exactly the same as those that were observed
for black holes in AdS spacetime. However, for « > 1, the
properties extracted for the temperature and the heat capacity
match those observed for black holes in the dS case. These
two specifications provide us with the possibility of conduct-
ing studies that are specified for the branch AdS/dS such as
AdS/CFT correspondence.

We have investigated the effects of thermal fluctuations on
thermodynamical quantities. Although the entropy and mass
were affected by thermal fluctuation, the first law remained
valid in this case as well. In studying the effects of first order
correction, it was shown that although the phase transition
points are independent of a first order correction, the stability
conditions, which determine thermal structure of the black
holes, are highly sensitive to variation of the first order cor-
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rection parameter. Here, we observed that depending on the
choice for correction parameter, the stability regions for black
holes are modified on high level depending on the possible
scenarios provided for @ < 1. On the other hand, the contri-
bution of a first order correction resulted in a destabilization
of the solutions for the « > 1 case. Remembering that ¢ < 1
could be interpreted as an AdS spacetime and @ > 1 as a
dS case, one can conclude that, for the AdS case, the stabil-
ity conditions depend on the correction parameter, while, for
dS case, a first order correction makes the solutions unstable
within the physical region. Furthermore, one can observe that
generalization to include the first order correction results in
larger families of the thermal structures provided for these
black holes in the AdS case.

The measurement of the entropy as a function of the fluc-
tuation in temperature revealed a profound deviation from
the non-correction case. In the case @« < 1, it was shown
that depending on the choices of the correction parameter, it
was possible to introduce phenomena such as cyclic behav-
ior and transition from one specific curve for diagrams to an
opposite curve. As fora > 1, the existence of a first order cor-
rection resulted in cyclic behavior as well for entropy versus
temperature diagrams and a minimum for the entropy which
correspondingly has a maximum of temperature. Generally
speaking, the possibilities of such behaviors were provided
due to the fact that entropy is correction dependent while the
temperature is independent of it. In addition to the mentioned
important effects of the first order correction, there is another
effect that is of importance; the temperatures of the critical
point through entropy versus temperature diagrams remained
fixed but the critical entropies were shifted to higher values.
This confirms that, generically, the black holes with first order
correction included have a phase transition in a higher level
of disorder in their system.

To complete our thermodynamical investigation, we stud-
ied the effects of the nonlinearity parameter and energy
functions on temperature and heat capacity. In the o < 1
case, interestingly, it was observed that, for small values of
the energy function and nonlinearity parameter, the system
enjoys a phase transition over aregion. Increasing these quan-
tities leads to formation of an extremum for the tempera-
ture, hence a divergence for heat capacity. In this case, the
phase transition was taking place over a single point. As for
o > 1, the maximum for the temperature was a decreasing
function of the energy functions and nonlinearity parameter,
and for sufficiency large values of these quantities, the maxi-
mum will be in the negative region of the temperature, which
is interpreted as absence of physical solutions. It is worth-
while to mention that, for vanishing nonlinearity parameter,
the general behavior of the temperature and type of diver-
gences were completely different, indicating the high con-
tribution of the nonlinear electromagnetic field generaliza-
tion.

Our study in this paper confirmed that consideration of
the first order correction result into larger classes of ther-
modynamical structure provided for black holes. But there
are two questions that should be answered: (1) are we free
to choose any value for the correction parameter? (2) Are
all possibilities that are provided for the thermal structure of
the black holes, physical ones? One method to regard these
questions is through the extended phase space. The concept
of extended phase space provides the possibility of studying
specific properties for black holes such as compressibility
coefficient and speed of sound. These properties along with
the concept that speed of sound must not exceed the speed of
light, provide us with the possibility of finding upper/lower
limit on the values that the correction parameter can acquire
and distinguish physical thermodynamical structures from
non-physical ones that were obtained in this paper. The only
shortcoming of this method is the fact that extended phase
space could only be introduced for the AdS case. In any case,
this issue is now under investigation and we hope to address
these questions in another paper.
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Appendix A: Einstein BI AdS black holes
The metric function of 4-dimensional black holes in the pres-

ence of Born—Infeld electromagnetic field and cosmological
constant is given by [114]

2
qf(r):k—?+<2ﬂ—A>r2

3
2822 202 842
Bl U W N (A1)
3 B2r4 3r2
in which H is the following hypergeometric function:
e 1 17 [5 242 (A2)
=2 1 2 ) 4 ) 4 ’ ﬂ2r4 ’

where ¢ and m are two integration constants related to the
electric charge and total mass of the black hole, respectively.

The temperature of these black holes could be found as
[114]
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Fig. 8 T (left panel) and C
(right panel) versus r4 for g =2
and k = 1; g = 0.26 (continues
line), g = 0.27 (dotted line),

g = 0.2964 (dashed line) and

g = 0.6 (dashed-dotted line).
Upper panels: A = —1; lower
panels: A =1

k 22— A)r 2r 242
_ +(,3 )+_,3+ . 614’ (A3)
drry 4r 2 B2y
where '} = 242
+ = ‘32,,1 .
The entropy of these black holes is obtained [114]:
1 2
S = yEs (A4)
and the heat capacity is given by
T T
Co = (AS)

(24), ~

Considering Eqgs. (A3) and (A4), it is a matter of calculation
to show that [114]

3

aT k22— A 2 242 \?
(), < poson
0S 0 2r+ 27TI’+ Try ,37‘+

(A6)

@ Springer

The thermodynamical behavior of the AdS black holes and
dS ones are given in Fig. 8.
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