68 research outputs found

    Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces

    Get PDF
    The adsorption from mixed polyelectrolyte-surfactant solutions at hydrophobized silica surfaces was investigated by in situ null-ellipsometry, and compared to similar measurements for hydrophilic silica surfaces. Three synthetic cationic copolymers of varying hydrophobicity and one cationic hydroxyethyl cellulose were compared in mixtures with the anionic surfactant sodium dodecylsulfate (SDS) in the absence or presence of a dilute silicone oil emulsion. The adsorption behavior was mapped while stepwise increasing the concentration of SDS to a polyelectrolyte solution of constant concentration. The effect on the deposition of dilution of the bulk solution in contact with the surface was also investigated by gradual replacement of the bulk solution with 1 mM aqueous NaCl. An adsorbed layer remained after complete exchange of the polyelectrolyte/surfactant solution for aqueous NaCl. In most cases, there was a codeposition of silicone oil droplets, if such droplets were present in the formulation before dilution. The overall features of the deposition were similar at hydrophobic and hydrophilic surfaces, but there were also notable differences. SDS molecules adsorbed selectively at the hydrophobized silica surface, but not at the hydrophilic silica, which influenced the coadsorption of the cationic polymers. The largest amount of deposited material after dilution was found for hydrophilic silica and for the least-hydrophobic cationic polymers. For the least-hydrophobic polyions, no significant codeposition of silicone oil was detected at hydrophobized silica after dilution if the initial SDS concentration was high

    Negative friction coefficients

    No full text

    Complex solutions under shear and pressure: a rheometer setup for X-ray scattering experiments

    No full text
    A newly developed high-pressure rheometer for in situ X-ray scattering experiments is described. A commercial rheometer was modified in such a way that X-ray scattering experiments can be performed under different pressures and shear. First experiments were carried out on hyaluronan, a ubiquitous biopolymer that is important for different functions in the body such as articular joint lubrication. The data hint at a decreased electrostatic interaction at higher pressure, presumably due to the increase of the dielectric constant of water by 3% and the decrease of the free volume at 300 bar

    Concomitant adsorption of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers and sodium dodecyl sulfate at the silica-water interface

    Full text link
    Upon addition of silica to aqueous solutions of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers (PEO-b-PCL) and sodium dodecyl sulfate (SDS), adsorption of the solutes occurs at the silica-water interface. The amount of the adsorbed constituents has been measured by the total concentration depletion method. Small-angle neutron scattering experiments (SANS) have been carried out to investigate the structure of the adsorbed layer. Although SDS is not spontaneously adsorbed onto hydrophilic silica, adsorption is observed in the presence of PEO-b-PCL diblocks, in relation to the relative concentration of the two compounds. Conversely, SDS has a depressive effect on the adsorption of the copolymer, whose structure at the interface is modified. Copolymer desorption is however never complete at high SDS content. These observations have been rationalized by the associative behavior of PEO-b-PCL and SDS in water

    Studying solutions at high shear rates: a dedicated microfluidics setup

    No full text
    The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s−1^{-1}. These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates
    • …
    corecore