15 research outputs found

    A New Class of Nonsingular Exact Solutions for Laplacian Pattern Formation

    Full text link
    We present a new class of exact solutions for the so-called {\it Laplacian Growth Equation} describing the zero-surface-tension limit of a variety of 2D pattern formation problems. Contrary to common belief, we prove that these solutions are free of finite-time singularities (cusps) for quite general initial conditions and may well describe real fingering instabilities. At long times the interface consists of N separated moving Saffman-Taylor fingers, with ``stagnation points'' in between, in agreement with numerous observations. This evolution resembles the N-soliton solution of classical integrable PDE's.Comment: LaTeX, uuencoded postscript file

    A boundary-integral method for two-phase displacement in Hele-Shaw cells

    No full text
    corecore