875 research outputs found

    A mathematical model of plant nutrient uptake

    Get PDF
    The classical model of plant root nutrient uptake due to Nye. Tinker and Barber is developed and extended. We provide an explicit closed formula for the uptake by a single cylindrical root for all cases of practical interest by solving the absorption-diffusion equation for the soil nutrient concentration asymptotically in the limit of large time. We then use this single root model as a building block to construct a model which allows for root size distribution in a more realistic plant root system, and we include the effects of root branching and growth. The results are compared with previous theoretical and experimental studies

    Definition of Naturally Processed Peptides Reveals Convergent Presentation of Autoantigenic Topoisomerase I Epitopes in Scleroderma.

    Get PDF
    ObjectiveAutoimmune responses to DNA topoisomerase I (topo I) are found in a subset of scleroderma patients who are at high risk for interstitial lung disease (ILD) and mortality. Anti-topo I antibodies (ATAs) are associated with specific HLA-DRB1 alleles, and the frequency of HLA-DR-restricted topo I-specific CD4+ T cells is associated with the presence, severity, and progression of ILD. Although this strongly implicates the presentation of topo I peptides by HLA-DR in scleroderma pathogenesis, the processing and presentation of topo I has not been studied.MethodsWe developed a natural antigen processing assay (NAPA) to identify putative CD4+ T cell epitopes of topo I presented by monocyte-derived dendritic cells (mo-DCs) from 6 ATA-positive patients with scleroderma. Mo-DCs were pulsed with topo I protein, HLA-DR-peptide complexes were isolated, and eluted peptides were analyzed by mass spectrometry. We then examined the ability of these naturally presented peptides to induce CD4+ T cell activation in 11 ATA-positive and 11 ATA-negative scleroderma patients.ResultsWe found that a common set of 10 topo I epitopes was presented by Mo-DCs from scleroderma patients with diverse HLA-DR variants. Sequence analysis revealed shared peptide-binding motifs within the HLA-DRβ chains of ATA-positive patients and a subset of topo I epitopes with distinct sets of anchor residues capable of binding to multiple different HLA-DR variants. The NAPA-derived epitopes elicited robust CD4+ T cell responses in 73% of ATA-positive patients (8 of 11), and the number of epitopes recognized correlated with ILD severity (P = 0.025).ConclusionThese findings mechanistically implicate the presentation of a convergent set of topo I epitopes in the development of scleroderma

    1989 evaluation of commercial corn hybrids for resistance to European corn borer in Missouri

    Get PDF
    Cover title."12/89/400.""Agricultural Research Service, U. S. Department of Agriculture.

    Thermodynamic route of Nb3Sn nucleation: Role of oxygen

    Full text link
    Intermetallic Nb3Sn alloys have long been believed to form through Sn diffusion into Nb. However, our observations of significant oxygen content in Nb3Sn prompted an investigation of alternative formation mechanisms. Through experiments involving different oxide interfaces (clean HF-treated, native oxidized, and anodized), we demonstrate a thermodynamic route that fundamentally challenges the conventional Sn diffusion mechanism for Nb3Sn nucleation. Our results highlight the critical involvement of a SnOx intermediate phase. This new nucleation mechanism identifies the principles for growth optimization and new synthesis of high-quality Nb3Sn superconductors

    Surface oxides, carbides, and impurities on RF superconducting Nb and Nb3Sn: A comprehensive analysis

    Full text link
    Surface structures on radio-frequency (RF) superconductors are crucially important in determining their interaction with the RF field. Here we investigate the surface compositions, structural profiles, and valence distributions of oxides, carbides, and impurities on niobium (Nb) and niobium-tin (Nb3Sn) in situ under different processing conditions. We establish the underlying mechanisms of vacuum baking and nitrogen processing in Nb and demonstrate that carbide formation induced during high-temperature baking, regardless of gas environment, determines subsequent oxide formation upon air exposure or low-temperature baking, leading to modifications of the electron population profile. Our findings support the combined contribution of surface oxides and second-phase formation to the outcome of ultra-high vacuum baking (oxygen processing) and nitrogen processing. Also, we observe that vapor-diffused Nb3Sn contains thick metastable oxides, while electrochemically synthesized Nb3Sn only has a thin oxide layer. Our findings reveal fundamental mechanisms of baking and processing Nb and Nb3Sn surface structures for high-performance superconducting RF and quantum application

    Direct detection of Rydberg–Rydberg millimeter-wave transitions in a buffer gas cooled molecular beam

    Get PDF
    Millimeter-wave transitions between molecular Rydberg states (n ∼ 35) of barium monofluoride are directly detected via Free Induction Decay (FID). Two powerful technologies are used in combination: Chirped-Pulse millimeter-Wave (CPmmW) spectroscopy and a buffer gas cooled molecular beam photoablation source. Hundreds of Rydberg–Rydberg transitions are recorded in 1 h with >10:1 signal:noise ratio and ∼150 kHz resolution. This high resolution, high spectral velocity experiment promises new strategies for rapid measurements of structural and dynamical information, such as the electric structure (multipole moments and polarizabilities) of the molecular ion-core and the strengths and mechanisms of resonances between Rydberg electron and ion-core motions. Direct measurements of Rydberg–Rydberg transitions with kilo-Debye dipole moments support efficient and definitive spectral analysis techniques, such as the Stark demolition and polarization diagnostics, which enable semi-automatic assignments of core-nonpenetrating Rydberg states. In addition, extremely strong radiation-mediated collective effects (superradiance) in a dense Rydberg gas of barium atoms are observed.National Science Foundation (U.S.) (Grant No. CHE-1361865)United States. Department of Defense (National Defence Science & Engineering Graduate Fellowship (NDSEG) Program
    corecore