23 research outputs found

    A new tool for tuberculosis vaccine screening: Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG-mediated protection in a murine model of tuberculosis.

    Get PDF
    BACKGROUND: In the absence of a validated animal model and/or an immune correlate which predict vaccine-mediated protection, large-scale clinical trials are currently the only option to prove efficacy of new tuberculosis candidate vaccines. Tools to facilitate testing of new tuberculosis (TB) vaccines are therefore urgently needed. METHODS: We present here an optimized ex vivo mycobacterial growth inhibition assay (MGIA) using a murine Mycobacterium tuberculosis infection model. This assay assesses the combined ability of host immune cells to inhibit mycobacterial growth in response to vaccination. C57BL/6 mice were immunized with Bacillus Calmette-Guérin (BCG) and growth inhibition of mycobacteria by splenocytes was assessed. Mice were also challenged with Mycobacterium tuberculosis Erdman, and bacterial burden was assessed in lungs and spleen. RESULTS: Using the growth inhibition assay, we find a reduction in BCG CFU of 0.3-0.8 log10 after co-culture with murine splenocytes from BCG vaccinated versus naïve C57BL/6 mice. BCG vaccination in our hands led to a reduction in bacterial burden after challenge with Mycobacterium tuberculosis of approx. 0.7 log10 CFU in lung and approx. 1 log10 CFU in spleen. This effect was also seen when using Mycobacterium smegmatis as the target of growth inhibition. An increase in mycobacterial numbers was found when splenocytes from interferon gamma-deficient mice were used, compared to wild type controls, indicating that immune mechanisms may also be investigated using this assay. CONCLUSIONS: We believe that the ex vivo mycobacterial growth inhibition assay could be a useful tool to help assess vaccine efficacy in future, alongside other established methods. It could also be a valuable tool for determination of underlying immune mechanisms

    A new tool for tuberculosis vaccine screening: Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG mediated protection in a murine model of tuberculosis

    No full text
    Background In the absence of a validated animal model and/or an immune correlate which predict vaccine-mediated protection, large-scale clinical trials are currently the only option to prove efficacy of new tuberculosis candidate vaccines. Tools to facilitate testing of new tuberculosis (TB) vaccines are therefore urgently needed. Methods We present here an optimised ex vivo mycobacterial growth inhibition assay (MGIA) using a murine Mycobacterium tuberculosis infection model. This assay assesses the combined ability of host immune cells to inhibit mycobacterial growth in response to vaccination. C57BL/6 mice were immunized with Bacillus Calmette-Guérin (BCG) and growth inhibition of mycobacteria by splenocytes was assessed. Mice were also challenged with Mycobacterium tuberculosis Erdman, and bacterial burden was assessed in lungs and spleen. Results Using the growth inhibition assay, we find a reduction in BCG CFU of 0.3-0.8 log10 after co-culture with murine splenocytes from BCG vaccinated versus naïve C57BL/6 mice. BCG vaccination in our hands led to a reduction in bacterial burden after challenge with Mycobacterium tuberculosis of approx. 0.7 log10 CFU in lung and approx. 1 log10 CFU in spleen. This effect was also seen when using Mycobacterium smegmatis as the target of growth inhibition. An increase in mycobacterial numbers was found when splenocytes from interferon gamma-deficient mice were used, compared to wild type controls, indicating that immune mechanisms may also be investigated using this assay. Conclusions We believe that the ex vivo mycobacterial growth inhibition assay could be a useful tool to help assess vaccine efficacy in future, alongside other established methods. It could also be a valuable tool for determination of underlying immune mechanisms.</p

    Developing a multivariate prediction model of antibody features associated with protection of malaria-infected pregnant women from placental malaria

    Get PDF
    Background: Plasmodium falciparum causes placental malaria, which results in adverse outcomes for mother and child. P. falciparum-infected erythrocytes that express the parasite protein VAR2CSA on their surface can bind to placental chondroitin sulfate A. It has been hypothesized that naturally acquired antibodies towards VAR2CSA protect against placental infection, but it has proven difficult to identify robust antibody correlates of protection from disease. The objective of this study was to develop a prediction model using antibody features that could identify women protected from placental malaria. Methods: We used a systems serology approach with elastic net-regularized logistic regression, partial least squares discriminant analysis, and a case-control study design to identify naturally acquired antibody features mid-pregnancy that were associated with protection from placental malaria at delivery in a cohort of 77 pregnant women from Madang, Papua New Guinea. Results: The machine learning techniques selected 6 out of 169 measured antibody features towards VAR2CSA that could predict (with 86% accuracy) whether a woman would subsequently have active placental malaria infection at delivery. Selected features included previously described associations with inhibition of placental binding and/or opsonic phagocytosis of infected erythrocytes, and network analysis indicated that there are not one but multiple pathways to protection from placental malaria. Conclusions: We have identified candidate antibody features that could accurately identify malaria-infected women as protected from placental infection. It is likely that there are multiple pathways to protection against placental malaria. Funding: This study was supported by the National Health and Medical Research Council (Nos. APP1143946, GNT1145303, APP1092789, APP1140509, and APP1104975)

    Targeted complement inhibition using bispecific antibodies that bind local antigens and endogenous complement regulators

    No full text
    Complement activation protects against infection but also contributes to pathological mechanisms in a range of clinical conditions such as autoimmune diseases and transplant rejection. Complement-inhibitory drugs, either approved or in development, usually act systemically, thereby increasing the risk for infections. We therefore envisioned a novel class of bispecific antibodies (bsAbs) which are capable of site-directed complement inhibition by bringing endogenous complement regulators in the vicinity of defined cell surface antigens. Here, we analyzed a comprehensive set of obligate bsAbs designed to crosslink a specific target with either complement regulator factor H (FH) or C4b-binding protein (C4BP). The bsAbs were assessed for their capacity to inhibit complement activation and cell lysis in an antigen-targeted manner. We observed that the bsAbs inhibited classical, lectin, and alternative pathway complement activation in which sufficient endogenous serum FH and C4BP could be recruited to achieve local inhibition. Importantly, the bsAbs effectively protected antigen-positive liposomes, erythrocytes, and human leukocytes from complement-mediated lysis. In conclusion, localized complement inhibition by bsAbs capable of recruiting endogenous human complement regulators (such as FH or C4BP) to cell surfaces potentially provides a novel therapeutic approach for the targeted treatment of complement-mediated diseases.</p
    corecore