71 research outputs found

    Machine Learning based Early Prediction of End-stage Renal Disease in Patients with Diabetic Kidney Disease using Clinical Trials Data

    Get PDF
    AimTo predict end‐stage renal disease (ESRD) in patients with type 2 diabetes by using machine‐learning models with multiple baseline demographic and clinical characteristics.Materials and methodsIn total, 11 789 patients with type 2 diabetes and nephropathy from three clinical trials, RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE (n = 8561), were used in this study. Eighteen baseline demographic and clinical characteristics were used as predictors to train machine‐learning models to predict ESRD (doubling of serum creatinine and/or ESRD). We used the area under the receiver operator curve (AUC) to assess the prediction performance of models and compared this with traditional Cox proportional hazard regression and kidney failure risk equation models.ResultsThe feed forward neural network model predicted ESRD with an AUC of 0.82 (0.76‐0.87), 0.81 (0.75‐0.86) and 0.84 (0.79‐0.90) in the RENAAL, IDNT and ALTITUDE trials, respectively. The feed forward neural network model selected urinary albumin to creatinine ratio, serum albumin, uric acid and serum creatinine as important predictors and obtained a state‐of‐the‐art performance for predicting long‐term ESRD.ConclusionsDespite large inter‐patient variability, non‐linear machine‐learning models can be used to predict long‐term ESRD in patients with type 2 diabetes and nephropathy using baseline demographic and clinical characteristics. The proposed method has the potential to create accurate and multiple outcome prediction automated models to identify high‐risk patients who could benefit from therapy in clinical practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163629/2/dom14178.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163629/1/dom14178_am.pd

    Exploring the role of competing demands and routines during the implementation of a self-management tool for type 2 diabetes: A theory-based qualitative interview study

    Get PDF
    Background The implementation of new medical interventions into routine care involves healthcare professionals adopting new clinical behaviours and changing existing ones. Whilst theory-based approaches can help understand healthcare professionals’ behaviours, such approaches often focus on a single behaviour and conceptualise its performance in terms of an underlying reflective process. Such approaches fail to consider the impact of non-reflective influences (e.g. habit and automaticity) and how the myriad of competing demands for their time may influence uptake. The current study aimed to apply a dual process theoretical approach to account for reflective and automatic determinants of healthcare professional behaviour while integrating a multiple behaviour approach to understanding the implementation and use of a new self-management tool by healthcare professionals in the context of diabetes care. Methods Following Diabetes UK’s national release of the ‘Information Prescription’ (DUK IP; a self-management tool targeting the management of cholesterol, blood pressure and HbA1c) in January 2015, we conducted semi-structured interviews with 13 healthcare professionals (general practitioners and nurses) who had started to use the DUK IP during consultations to provide self-management advice to people with type 2 diabetes. A theory-based topic guide included pre-specified constructs from a previously developed logic model. We elicited healthcare professionals’ views on reflective processes (outcome expectations, self-efficacy, intention, action and coping planning), automatic processes (habit), and multiple behaviour processes (goal priority, goal conflict and goal facilitation). All interviews were audio recorded and transcribed verbatim and all transcripts were independently double coded and analysed using content analysis. Results The majority of healthcare professionals interviewed reported strong intentions to use the DUK IP and having formed a habit of using them after a minimum of one month continuous use. Pop-up cues in the electronic patient records were perceived to facilitate the use of the tool. Factors that conflicted with the use of the DUK IP included existing pathways of providing self-management advice. Conclusion Data suggests that constructs from dual process and multiple behaviour approaches are useful to provide supplemental understanding of the implementation of new self-management tools such as the DUK IP and may help to advance behavioural approaches to implementation science

    International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality

    Get PDF
    Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach

    Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: An international multi-centre observational cohort study

    Get PDF
    Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1–365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53–3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03–4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55–5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14–1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37–0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17–1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20–1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45–1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80–13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10–1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32–1.67) and 365 days (RR 1.54, 95%CI 1.21–1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section

    Big Data Technologies

    No full text

    Analyzing Complex Patients’ Temporal Histories: New Frontiers in Temporal Data MiningData Mining in Clinical Medicine

    No full text
    In recent years, data coming from hospital information systems (HIS) and local healthcare organizations have started to be intensively used for research purposes. This rising amount of available data allows reconstructing the compete histories of the patients, which have a strong temporal component. This chapter introduces the major challenges faced by temporal data mining researchers in an era when huge quantities of complex clinical temporal data are becoming available. The analysis is focused on the peculiar features of this kind of data and describes the methodological and technological aspects that allow managing such complex framework. The chapter shows how heterogeneous data can be processed to derive a homogeneous representation. Starting from this representation, it illustrates different techniques for jointly analyze such kind of data. Finally, the technological strategies that allow creating a common data warehouse to gather data coming from different sources and with different formats are presented

    Health informatics and EHR to support clinical research in the COVID-19 pandemic: An overview

    No full text
    The coronavirus disease 2019 (COVID-19) pandemic has clearly shown that major challenges and threats for humankind need to be addressed with global answers and shared decisions. Data and their analytics are crucial components of such decision-making activities. Rather interestingly, one of the most difficult aspects is reusing and sharing of accurate and detailed clinical data collected by Electronic Health Records (EHR), even if these data have a paramount importance. EHR data, in fact, are not only essential for supporting day-by-day activities, but also they can leverage research and support critical decisions about effectiveness of drugs and therapeutic strategies. In this paper, we will concentrate our attention on collaborative data infrastructures to support COVID-19 research and on the open issues of data sharing and data governance that COVID-19 had made emerge. Data interoperability, healthcare processes modelling and representation, shared procedures to deal with different data privacy regulations, and data stewardship and governance are seen as the most important aspects to boost collaborative research. Lessons learned from COVID-19 pandemic can be a strong element to improve international research and our future capability of dealing with fast developing emergencies and needs, which are likely to be more frequent in the future in our connected and intertwined world
    • 

    corecore