3,396 research outputs found

    Frustrated collisions and unconventional pairing on a quantum superlattice

    Full text link
    We solve the problem of scattering and binding of two spin-1/2 fermions on a one-dimensional superlattice with a period of twice the lattice spacing analytically. We find the exact bound states and the scattering states, consisting of a generalized Bethe ansatz augmented with an extra scattering product due to "asymptotic" degeneracy. If a Bloch band is doubly occupied, the extra wave can be a bound state in the continuum corresponding to a single-particle interband transition. In all other cases, it corresponds to a quasi-momentum changing, frustrated collision.Comment: 4 pages, 2 figure

    Photoassociative spectroscopy at long range in ultracold strontium

    Get PDF
    We report photoassociative spectroscopy of 88^{88}Sr2_2 in a magneto-optical trap operating on the 1S03P1{^1S_0}\to{^3P_1} intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1S01P1{^1S_0}\to{^1P_1} atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1{^1P_1} atomic lifetime (τ=5.22±0.03\tau=5.22 \pm 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.Comment: 4 pages, 4 figures, submitte

    Quantum Chessboards in the Deuterium Molecular Ion

    Get PDF
    We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)Comment: 12 pages, 5 figure

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    On the Definition of Effective Permittivity and Permeability For Thin Composite Layers

    Get PDF
    The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters ϵeff\epsilon_{\rm{eff}} and μeff\mu_{\rm{eff}} for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail.Comment: 6 pages, 5 figure

    Gravitational lensing by gravitational waves

    Full text link
    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.Comment: 9 pages, 3 figure

    Central nervous system manganese induced lesions and clinical consequences in patients with hereditary hemorrhagic telangiectasia

    Get PDF
    Abstract Background Around 47–74% of patients with hereditary hemorrhagic telangiectasia (HHT) have hepatic vascular malformations (HVMs); magnetic resonance images (MRI) of the central nervous system (CNS) might show in T1 sequences a hyper-intensity signal in different areas, mainly in the basal ganglia (BG) as consequence of manganese (Mn) deposits as observed in cirrhotic patients. These patients might suffer from different neuropsychiatric disorders (hepatic encephalopathy). In HHT patients, even in the presence of hepatic shunts, hepatocellular function is usually preserved. Additionally, Mn shares iron absorption mechanisms, transferrin and CNS transferrin receptors. In iron deficiency conditions, the Mn may harbor transferrin and access BG. The objectives were to describe frequency of BG Mn deposit-induced lesions (BGMnIL) in HHT patients, its relationship with iron deficiency anemia (IDA) and HVMs. Finally, explore the association between neuropsychological and motor consequences. We performed a cross-sectional study. We determined HHT patients with or without BG-MnIL by the MRI screening of the CNS. We included all patients with lesions and a random sample of those without lesions. All patients underwent standardized and validated neuropsychological assessment to evaluate BG actions. Results were analyzed with multiple logistic regression, adjusting for potential confounders. Results Among 307 participants from a cohort included in the Institutional HHT Registry, 179 patients had MRI performed and Curaçao Criteria ≥3. The prevalence of BG-MnIL was 34.6% (95%CI 27.69-42.09). While neuropsychological symptoms were present in all patients, BG-MnIL patients performed poorly in three of the neuropsychological tests (serial dotting, line tracing time, number connection test A). HVMs frequency in BG-MnIL was 95.1%, versus 71.4% in those without lesions (p < 0.001). IDA frequency was 90.3% versus 54% (p < 0.001). When IDA is present, estimated risk for BG-MnIL is remarkably high (OR 7.73, 95%CI 2.23–26.73). After adjustment for possible confounders (gender, age, presence of HVMs), IDA was still associated with increased risk of BG-MnIL (adjusted OR 6.32, 95% CI 2.32–17.20; p < 0.001). Conclusions Physicians should assess BG-MnIL in HHT patients in CNS-MRI. IDA and HVMs present increased risk of lesions. Patients with BG-MnIL have neuropsychological impairment, and they might benefit from sparing IDA, or undergoing future therapeutic options. Trial registration NCT01761981 . Registered January 3rd 2013

    Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas

    Full text link
    Absorption imaging and spectroscopy can probe the dynamics of an ultracold neutral plasma during the first few microseconds after its creation. Quantitative analysis of the data, however, is complicated by the inhomogeneous density distribution, expansion of the plasma, and possible lack of global thermal equilibrium for the ions. In this article we describe methods for addressing these issues. Using simple assumptions about the underlying temperature distribution and ion motion, the Doppler-broadened absorption spectrum obtained from plasma images can be related to the average temperature in the plasma.Comment: 14 pages, 8 figure

    Ultracold Neutral Plasmas

    Full text link
    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach 101110^{11} cm3^{-3}. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+^+ 2S_1/2>2P_1/2{^2S\_{1/2}} -> {^2P\_{1/2}} transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    corecore