3,396 research outputs found
Frustrated collisions and unconventional pairing on a quantum superlattice
We solve the problem of scattering and binding of two spin-1/2 fermions on a
one-dimensional superlattice with a period of twice the lattice spacing
analytically. We find the exact bound states and the scattering states,
consisting of a generalized Bethe ansatz augmented with an extra scattering
product due to "asymptotic" degeneracy. If a Bloch band is doubly occupied, the
extra wave can be a bound state in the continuum corresponding to a
single-particle interband transition. In all other cases, it corresponds to a
quasi-momentum changing, frustrated collision.Comment: 4 pages, 2 figure
Photoassociative spectroscopy at long range in ultracold strontium
We report photoassociative spectroscopy of Sr in a magneto-optical
trap operating on the intercombination line at 689 nm.
Photoassociative transitions are driven with a laser red-detuned by 600-2400
MHz from the atomic resonance at 461 nm. Photoassociation
takes place at extremely large internuclear separation, and the
photoassociative spectrum is strongly affected by relativistic retardation. A
fit of the transition frequencies determines the atomic lifetime
( ns) and resolves a discrepancy between experiment and
recent theoretical calculations.Comment: 4 pages, 4 figures, submitte
Quantum Chessboards in the Deuterium Molecular Ion
We present a new algorithm for vibrational control in deuterium molecules
that is feasible with current experimental technology. A pump mechanism is used
to create a coherent superposition of the D2+ vibrations. A short, intense
infrared control pulse is applied after a chosen delay time to create selective
interferences. A `chessboard' pattern of states can be realized in which a set
of even- or odd-numbered vibrational states can be selectively annihilated or
enhanced. A technique is proposed for experimental realization and observation
of this effect using 5 fs pulses of 790 nm radiation, with intermediate
intensity (5e13 W/cm2)Comment: 12 pages, 5 figure
Recommended from our members
Estimating Lorenz’s Reference State in an Ocean with a Nonlinear Equation of State for Seawater
The study of the mechanical energy budget of the oceans using the Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically rearranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which is illustrated using climatological data, the authors show that compressibility effects are in fact minor. The reference state can be regarded as a well-defined one-dimensional function of depth, which forms a surface in temperature, salinity, and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. This study shows that the reference state obtained by standard sorting methods is equivalent to, though computationally more expensive than, the volume frequency distribution approach. The approach that is presented can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data
Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr
We report the use of photoassociative spectroscopy to determine the ground
state s-wave scattering lengths for the main bosonic isotopes of strontium,
86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned
by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the
transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the
scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of
-1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
On the Definition of Effective Permittivity and Permeability For Thin Composite Layers
The problem of definition of effective material parameters (permittivity and
permeability) for composite layers containing only one-two parallel arrays of
complex-shaped inclusions is discussed. Such structures are of high importance
for the design of novel metamaterials, where the realizable layers quite often
have only one or two layers of particles across the sample thickness. Effective
parameters which describe the averaged induced polarizations are introduced. As
an explicit example, we develop an analytical model suitable for calculation of
the effective material parameters and
for double arrays of electrically small electrically polarizable scatterers.
Electric and magnetic dipole moments induced in the structure and the
corresponding reflection and transmission coefficients are calculated using the
local field approach for the normal plane-wave incidence, and effective
parameters are introduced through the averaged fields and polarizations. In the
absence of losses both material parameters are purely real and satisfy the
Kramers-Kronig relations and the second law of thermodynamics. We compare the
analytical results to the simulated and experimental results available in the
literature. The physical meaning of the introduced parameters is discussed in
detail.Comment: 6 pages, 5 figure
Gravitational lensing by gravitational waves
Gravitational lensing by gravitational wave is considered. We notice that
although final and initial direction of photons coincide, displacement between
final and initial trajectories occurs. This displacement is calculated
analytically for the plane gravitational wave pulse. Estimations for
observations are discussed.Comment: 9 pages, 3 figure
Central nervous system manganese induced lesions and clinical consequences in patients with hereditary hemorrhagic telangiectasia
Abstract Background Around 47–74% of patients with hereditary hemorrhagic telangiectasia (HHT) have hepatic vascular malformations (HVMs); magnetic resonance images (MRI) of the central nervous system (CNS) might show in T1 sequences a hyper-intensity signal in different areas, mainly in the basal ganglia (BG) as consequence of manganese (Mn) deposits as observed in cirrhotic patients. These patients might suffer from different neuropsychiatric disorders (hepatic encephalopathy). In HHT patients, even in the presence of hepatic shunts, hepatocellular function is usually preserved. Additionally, Mn shares iron absorption mechanisms, transferrin and CNS transferrin receptors. In iron deficiency conditions, the Mn may harbor transferrin and access BG. The objectives were to describe frequency of BG Mn deposit-induced lesions (BGMnIL) in HHT patients, its relationship with iron deficiency anemia (IDA) and HVMs. Finally, explore the association between neuropsychological and motor consequences. We performed a cross-sectional study. We determined HHT patients with or without BG-MnIL by the MRI screening of the CNS. We included all patients with lesions and a random sample of those without lesions. All patients underwent standardized and validated neuropsychological assessment to evaluate BG actions. Results were analyzed with multiple logistic regression, adjusting for potential confounders. Results Among 307 participants from a cohort included in the Institutional HHT Registry, 179 patients had MRI performed and Curaçao Criteria ≥3. The prevalence of BG-MnIL was 34.6% (95%CI 27.69-42.09). While neuropsychological symptoms were present in all patients, BG-MnIL patients performed poorly in three of the neuropsychological tests (serial dotting, line tracing time, number connection test A). HVMs frequency in BG-MnIL was 95.1%, versus 71.4% in those without lesions (p < 0.001). IDA frequency was 90.3% versus 54% (p < 0.001). When IDA is present, estimated risk for BG-MnIL is remarkably high (OR 7.73, 95%CI 2.23–26.73). After adjustment for possible confounders (gender, age, presence of HVMs), IDA was still associated with increased risk of BG-MnIL (adjusted OR 6.32, 95% CI 2.32–17.20; p < 0.001). Conclusions Physicians should assess BG-MnIL in HHT patients in CNS-MRI. IDA and HVMs present increased risk of lesions. Patients with BG-MnIL have neuropsychological impairment, and they might benefit from sparing IDA, or undergoing future therapeutic options. Trial registration NCT01761981 . Registered January 3rd 2013
Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas
Absorption imaging and spectroscopy can probe the dynamics of an ultracold
neutral plasma during the first few microseconds after its creation.
Quantitative analysis of the data, however, is complicated by the inhomogeneous
density distribution, expansion of the plasma, and possible lack of global
thermal equilibrium for the ions. In this article we describe methods for
addressing these issues. Using simple assumptions about the underlying
temperature distribution and ion motion, the Doppler-broadened absorption
spectrum obtained from plasma images can be related to the average temperature
in the plasma.Comment: 14 pages, 8 figure
Ultracold Neutral Plasmas
Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near
the ionization threshold. Through the application of atomic physics techniques
and diagnostics, these experiments stretch the boundaries of traditional
neutral plasma physics. The electron temperature in these plasmas ranges from
1-1000 K and the ion temperature is around 1 K. The density can approach
cm. Fundamental interest stems from the possibility of
creating strongly-coupled plasmas, but recombination, collective modes, and
thermalization in these systems have also been studied. Optical absorption
images of a strontium plasma, using the Sr
transition at 422 nm, depict the density profile of the plasma, and probe
kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum
measures the ion velocity distribution, which gives an accurate measure of the
ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
- …
