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ABSTRACT

The study of themechanical energy budget of the oceans using theLorenz available potential energy (APE) theory is based on knowledge of

the adiabatically rearrangedLorenz reference state ofminimumpotential energy. The compressible and nonlinear character of the equationof

state for seawater has been thought to cause the reference state to be ill defined, casting doubt on the usefulness of APE theory for in-

vestigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of

temperature and salinity in the context of the seawater Boussinesq approximation, which is illustrated using climatological data, the authors

show that compressibility effects are in fact minor. The reference state can be regarded as a well-defined one-dimensional function of depth,

which forms a surface in temperature, salinity, and density space between the surface and the bottomof the ocean. For a very small proportion

of water masses, this surface can bemultivalued and water parcels can have up to two statically stable levels in the reference density profile, of

which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density

profile than classifying in the opposite direction. However, this difference is negligible. This study shows that the reference state obtained by

standard sorting methods is equivalent to, though computationally more expensive than, the volume frequency distribution approach. The

approach that is presented can be applied systematically and in a computationally efficientmanner to investigate theAPE budget of the ocean

circulation using models or climatological data.

1. Introduction

The global kinetic energy (KE) budget plays a key

role in ocean energetics, for it is often the natural

starting point for discussing how the ocean circulation is
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forced and dissipated. In its standard form, the kinetic

energy budget reveals that kinetic energy is primarily

controlled by 1) the power input due to the wind

forcing and tidal forcing, 2) viscous dissipation, and

3) the net conversion between potential energy

(PE) and kinetic energy (Gregory and Tailleux 2011).

Of these three terms, only the first one is well un-

derstood, and quantifiable from observations, as dis-

cussed in Roquet et al. (2011) and Zhai et al. (2012),

among others. Although local turbulent viscous dis-

sipation rates are routinely observed as part of cam-

paigns to measure turbulent mixing in the oceans,

these are so variable spatially and temporally that it

is difficult to infer what the volume-integrated vis-

cous dissipation is. Oort et al. (1994) originally as-

sumed that in the ocean there is a net conversion of

potential energy into kinetic energy. This was then

disputed by Toggweiler and Samuels (1998) and in

subsequent modeling studies using ocean-only

models (Gnanadesikan et al. 2005) and coupled cli-

mate models (Gregory and Tailleux 2011), in which

net conversion from kinetic energy to potential en-

ergy has been found, dominated by wind power input

through Ekman pumping in the Antarctic circum-

polar region.

The standard kinetic energy budget, however,

does not directly reveal the role and importance of

surface buoyancy fluxes and interior mixing pro-

cesses of heat and salt in forcing and dissipating the

ocean circulation. These processes control, at least

in part, the sign and magnitude of the net conversion

between potential and kinetic energy in the oceans.

Linking the mechanical energy (gravitational po-

tential plus kinetic energy) budget to surface buoy-

ancy fluxes and interior mixing processes has been

a controversial topic and has been overlooked in

recent reviews on ocean energetics by Wunsch and

Ferrari (2004), Kuhlbrodt et al. (2007), and Ferrari

andWunsch (2009). In these reviews, the mechanism

by which surface buoyancy forcing by heat and

freshwater fluxes provides mechanical energy to the

ocean circulation has been related to the mechanical

work of expansion and contraction produced by

a heat engine, which in classical thermodynamics

can be done by combining energy conservation with

the entropy budget. For a stratified fluid, however,

the available potential energy (APE) budget in-

troduced by Lorenz (1955) is better suited for rep-

resenting the mechanical power input by buoyancy

forces that results from surface heat and freshwater

fluxes. Also, available potential energy decomposes

the net conversion between potential and kinetic

energy as the difference between a production term

by surface buoyancy fluxes minus a dissipation term

by interior mixing (Hughes et al. 2009; Tailleux

2010, 2012).

Quantifying available potential energy in the frame-

work of Lorenz (1955) relies on the definition of

a globally static and stably stratified reference state

obtained from the actual state by means of an adia-

batic rearrangement of the fluid parcels conserving

mass and salt. Defining the reference state for a fluid

with a linear equation of state (EOS) in a simple do-

main with no sills or enclosed basins is made

straightforward by, for instance, sorting water parcels

according to density and filling the ocean volume level

by level with the sorted density field (e.g., Winters

et al. 1995). This sorting formulation has been used

recently to investigate the mechanical energy budget

of ocean circulation in a number of idealized situa-

tions (Hughes et al. 2009; Saenz et al. 2012; Hogg et al.

2013; Dijkstra et al. 2014).

Generalizing the concept of a reference state for

the ocean under realistic conditions has remained

problematic because of the presence of topographic

sills and because of the nonlinearities of the equation

of state for seawater. Topographic barriers block

heavy waters from flowing between ocean basins,

and it has been unclear how to represent this effect

on the APE budget. Stewart et al. (2014) show that

energy fluxes in the APE budget are largely in-

sensitive to how the effects of topographic barriers

are represented. On the other hand, the compress-

ibility and the nonlinear dependence that density has

on pressure leads to difficulties when sorting water

parcels according to density, as the density needs to

be recalculated at every level that is being filled. This

makes calculating the reference state computation-

ally expensive and causes the position of water par-

cels in the reference state to depend on the number

of levels used and on whether the ocean volume is

being sorted by increasing or decreasing density

(e.g., Ilicak et al. 2012). Ad hoc sorting methods have

nevertheless been devised to overcome these diffi-

culties and have been used to investigate, for ex-

ample, available potential energy in the global

oceans (Huang 2005) and mixing in fluids with

a nonlinear EOS (Ilicak et al. 2012; Petersen et al.

2015; Butler et al. 2013), but they provide no physical

insight into the effects of compressibility and non-

linearities on the resulting reference density profile

and remain computationally expensive. The lack of

a physically tractable and well understood method to

construct the Lorenz reference state has led to

skepticism about the applicability of the APE

framework to the ocean with a nonlinear equation of
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state. However, the physical basis for such skepti-

cism has been lacking.

In this paper, we investigate the reference state for

the ocean with a nonlinear equation of state for sea-

water by generalizing the approach proposed by

Tseng and Ferziger (2001), based on the volume fre-

quency distribution of water masses in temperature–

salinity space. We demonstrate that, for all practical

purposes, the oceanic reference state can be regarded

as well defined. In doing so, we provide a framework

by which the reference state can be obtained and

characterized systematically in a physically tractable

and computationally efficient manner. The work by

Stewart et al. (2014) and the work we present in this

paper together lay the groundwork for using avail-

able potential energy to quantify the mechanical

energy budget in ocean circulation under realistic

conditions.

In section 2, we summarize basic concepts of the

local formulation of APE theory for a Boussinesq

ocean that will be used in this paper. Then, in section

3, we present a new approach based on the volume

frequency distribution of water masses to link the

reference state to the thermophysical properties of

the ocean. In section 4, we discuss the reference po-

sition of the ocean parcels obtained using our ap-

proach, and in section 5, we discuss the links of our

approach with sorting-based methods. Last, in section

6, we briefly discuss the implications for ocean APE

estimates, and we summarize and discuss the results

in section 7.

2. A review of available potential energy for
a Boussinesq fluid

To set the context and to introduce concepts that will be

used in this paper, in this section we present a brief sum-

mary of the general theoretical framework in Tailleux

(2013) and present it in a form that is applicable to the

ocean.

a. Model assumptions and governing equations

We investigate the Lorenz reference state for a re-

alistic ocean in the context of the Boussinesq approxi-

mation. The governing equations are

Du

Dt
1 f z3 u1

1

r0
$h p5Fu , (1)

›p

›z
52rg , (2)

$h � u1
›w

›z
5 0, (3)

DQ

Dt
5 _Q,

DS

Dt
5 _S, and (4)

r5 r[S,Q,p0(z)] , (5)

where u5 (u, y) is the horizontal velocity field; w is

the vertical velocity;D/Dt5 ›/›t1 u›/›x1 y›/›y1w›/›z;

$h 5 (›/›x, ›/›y); p is the pressure; Fu represents mo-

mentum forcing; r is density; r0 is a reference Boussinesq

density; g is the acceleration of gravity; f is the Coriolis

parameter; Q is the potential temperature or Conser-

vative Temperature (as in McDougall 2003); S is salinity;

and _Q and _S represent sinks and sources for Q and S,

respectively. The equation of state r5 r[S, Q, p0(z)] is

assumed to be formulated in terms of the Boussinesq

pressure p0(z)52r0gz to ensure energy consistency

(e.g., Young 2010; Tailleux 2012), which also requires the

surface to be situated at z5 0.

b. Available potential energy: Work by buoyancy
forces

By construction, the reference state in APE theory is

a notional state of rest that can, in principle, be reached

from the actual state by means of a volume-conserving,

adiabatic, and isohaline rearrangement. The reference

density rr(z, t) is thus a one-dimensional function of

depth and is also a function of time in the sense that the

ocean can have different reference states at different

times. It is in hydrostatic equilibrium with the reference

pressure pr, that is, ›pr/›z52rrg. As discussed in

Tailleux (2013), it is natural in APE theory to define the

buoyancy of a fluid parcel relative to the reference

density rr, that is,

b5 b(S,Q, z, t)52g
r2 rr
r0

. (6)

The APE for a fluid parcel Ea can then be defined as the

work against buoyancy forces required to lift a parcel

from its equilibrium position in the reference state zr to

its actual position z. We refer to Ea as APE density, after

Winters and Barkan (2013). For a fully compressible

fluid (Andrews 1981) and for a Boussinesq fluid with

a linear equation of state (Holliday and Mcintyre 1981),

the APE density can be written as

Ea(S,Q, z, t)52

ðz
z
r

b(S,Q, z0, t) dz0

5
g

r0

ðz
z
r

fr[S,Q,p0(z
0)]2 rr(z

0, t)gdz0 . (7)
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By construction, the reference position zr of a fluid

parcel in the reference state corresponds to the depth at

which its density is equal to the reference density:

r[S,Q,p0(zr)]5 rr(zr, t) , (8)

which is referred to as the level of neutral buoyancy

(LNB) equation. Equation (8) defines zr 5 zr(S, Q, t) as

a function of materially conserved variables and time.

For small-amplitude displacements z5 z2 zr, Ea re-

duces to the familiar formula

Ea’N2
r

z2

2
, (9)

where N2
r is the squared buoyancy frequency:

N2
r (S,Q, t)52

g

r0

(
›rr
›z

(zr, t)1
r0g

c2s [Q,S, p0(zr)]

)
, (10)

in which c2s 5 (›r/›p)21 is the squared speed of sound.

Note that while rr(z, t) depends only on depth for any

given time t,Nr(x, t)5Nr[S(x, t), Q(x, t), t] depends on

position and time. The quantityN2
r will be useful later in

this paper to select a root when the LNB equation has

more than one solution.

c. Interpretation of APE density and its relation to
global APE

Integration by parts of the first term in the right-hand

side of Eq. (7) allows the change in potential energy fol-

lowing a parcel between its actual and reference position to

be written asðz
z
r

gr[S,Q,p0(z
0)] dz0 5 rgz2 rrgzr 1

ðz
z
r

r0g
2z0

c2s
dz0

5 r0(Dgpe1Die)5 r0Dpe,

(11)

where gpe5 rgz/r0 and ie are specific gravitational po-

tential and internal energies in the Boussinesq approx-

imation, respectively. In a fully compressible fluid, the

change in specific internal energy associated with a change

in pressure is given by die52pdnadiab 5 pdp/(r2c2s ),

where n5 1/r is specific volume. For a Boussinesq fluid,

this change is approximated as

diebouss ’ (2r0gz)(2r0gdz)/(r
2
0c

2
s )5 g2zdz/c2s .

Thus, the term involving c2s in Eq. (7) is interpreted as

the change in specific internal energy Die between the

parcel’s actual position and its position in the reference

state. As a result, and since the reference state is in

hydrostatic equilibrium, the APE density can be writ-

ten as

r0Ea5 r0(Dgpe1Die)1 pr(z, t)2 pr(zr, t) , (12)

that is, as the sum of changes in gravitational potential

and internal energy, as well as pressure work, as origi-

nally established by Andrews (1981) for a fully com-

pressible fluid. The volume integral of pr(z, t)2 pr(zr, t)

vanishes for reference states that are rearranged in an

adiabatic and isohaline manner from the actual state (see,

e.g., Tailleux 2013). As a result, the volume-integrated

APE density becomesð
V
r0Ea dV5PE2PEr 5APE, (13)

that is, the difference between the potential energy of

the actual and reference states as defined by Lorenz

(1955). This establishes the equivalence between the

local approach presented in this section and the global

approach used by Lorenz (1955).

Note that, from the above result, total APE can also

be written as the sum of its gravitational potential and

internal energy components,

APE5AGPE1AIE, (14)

exactly as for a fully compressible fluid. The internal

energy contribution arises because of the pressure

dependence of density, which explains why it is absent

in idealized studies using a linear equation of state

(e.g., Winters et al. 1995; Hughes et al. 2009). Further,

the Boussinesq approximation for seawater admits

a fully consistent set of thermodynamic functions that

can be obtained from the exact Gibbs function de-

scribing all thermodynamic properties (for details see

Tailleux 2012).

d. Local description of the ocean energy cycle

An advantage of the APE density in Eq. (7) over

global APE is that it gives a local description of KE/PE

conversions. The local evolution equation for the kinetic

energy is obtained by multiplying the horizontal mo-

mentum equations by u (after subtracting pr from p),

which leads to

r0
DEk
Dt

52u � $h(p2 pr)1 r0u � Fu , (15)

where Ek 5 u2/2 is the kinetic energy density of the cir-

culation (which neglects the vertical velocity component

in the hydrostatic approximation). A local evolution

MAY 2015 SAENZ ET AL . 1245



equation for the APE density is obtained by taking the

time derivative of Eq. (7) premultiplied by r0. After

using the definition of the LNB and some manipulation

(for details see Tailleux 2013), we obtain

r0
DEa
Dt

1$ � [(p2 pr)v]5 u � $h(p2 pr)1 r0Ga . (16)

In the above equation, Ga represents the local genera-

tion of APE, given by

Ga5GQ
_Q1GS

_S2

ðz
z
r

g
›rr
›t

dz , (17)

where GQ and GS are thermal and haline efficiency

factors defined by

GQ 5

ðz
z
r

g

r0

›r

›Q
dz0 52

ðz
z
r

gadz052ga(z2 zr), and

(18)

GS 5

ðz
z
r

g

r0

›r

›S
dz05

ðz
z
r

gb dz0 5 gb(z2 zr) , (19)

where a and b are the thermal expansion and haline

contraction coefficients defined relative to the (Q, S, p)

variables, and a and b are their vertically averaged

values over the interval [zr, z].

Alternatively, using u � $h(p2 pr)5$ � [(p2 pr)v]1
w(r2 rr)g, the local energy cycle can also be written as

r0
DEk
Dt

1$ � [(p2 pr)v]52(r2 rr)gw1 r0u � Fu, and

(20)

r0
DEa
Dt

5 (r2 rr)gw1 r0Ga . (21)

Although the two formulations are mathematically

equivalent, they provide alternative expressions for the

local conversion between APE and KE, C(A, K). In the

first formulation, this conversion is given by

C(A,K)52u � $h(p2 pr)52u � $h p , (22)

while in the second formulation it is expressed in terms

of the buoyancy flux:

C(A,K)52(r2 rr)gw . (23)

So far, most studies of ocean energetics have used

Eq. (23) as the definition of C(A, K), the exception

being Gregory and Tailleux (2011), who used Eq. (22)

to investigate the spatial and temporal variations of

the vertically integrated C(A, K) in global warming

experiments.

e. APE production and dissipation

A common approach in ocean modeling is to express

the source and sink terms for temperature and salinity

as the divergence of heat and salt fluxes, namely,
_Q5$ � FQ and _S5$ � FS, associated with the surface

boundary conditions FQ � n5Q/(r0cp) and FS � n5
S0(E2P), where Q is the surface heat flux into the

ocean (with Q. 0 denoting heat going into the ocean),

cp is the heat capacity, S0 is a reference salinity value,

andE2P is evaporation minus precipitation. Assuming

insulating boundaries everywhere else, the volume in-

tegral of Ga in Eq. (17) can be decomposed as the dif-

ference between a production term by surface buoyancy

fluxes G(A) minus a term representing dissipation by

diffusive fluxes of heat and salt D(A) orð
V
r0Ga dV5G(A)2D(A) . (24)

The APE production term is given by

G(A)5

ð
S

g~azrQ

cp
dS2

ð
S
r0g

~bzrS0(E2P) dS , (25)

where ~a and ~b are the mean values of a and b applicable

to each parcel at the surface. Since zr , 0 by definition, it

follows that APE production is associated with local

cooling (Q, 0) and net evaporation (E2P, 0). For

a linear equation of state and in the absence of salinity

variations, we have G(A)52
Ð
SgazrQ/cp dS, which re-

duces to the term denoted byFb2 inHughes et al. (2009).

Similarly, the dissipation term is

D(A)5

ð
V
r0(FQ � $GQ 1FS � $GS) dV , (26)

which reduces to Fd 2Fi in Hughes et al. (2009) for

a linear equation of state in the absence of salinity

variations.

3. Linking the reference state rr(z) to the
stratification and thermophysical properties of
the ocean

In this section, we outline a new approach to con-

structing the Lorenz reference state rr(z). This approach

can be regarded as an extension to a binary fluid of the

approach previously developed by Tseng and Ferziger

(2001). As a result, it is expected to be computationally

more efficient than the commonly used sorting methods

(e.g., Winters et al. 1995; Huang 2005). We begin by

making the important point that in practice determining

rr(z) only requires the knowledge of rr(zk) at a relatively

small numberN of target depths zk, k5 1 . . .N. Typically
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30#N# 50 is sufficient to accurately describe the ocean

stratification. Assuming that we can devise a computa-

tionally inexpensive way to estimate rr(zk) at the pre-

selected N target depths zk (to be discussed below),

simple interpolation can then be used to estimate rr(z) at

any arbitrary depth z if needed. Once rr(z) is known, the

reference position zr(x) for each ocean parcel can be

obtained by solving the LNB Eq. (8), for instance using

a standard numerical root-finding scheme. In fact, the

LNB Eq. (8) defines zr 5 zr(Q, S) as a function of the

materially conserved variables Q and S, so that we can

write zr(x)5 zr[Q(x), S(x)].

From a fundamental viewpoint, the above method

divorces the task of constructing the reference density

profile rr(z) from the task of computing the reference

position zr(x) for each parcel of water. This is an impor-

tant departure from current sorting-based approaches,

which accomplish the two tasks simultaneously. As we

justify below, such a divorce is not only feasible but also

essential for elucidating the nature of the difficulties

associated with the nonlinearity of the equation of state

and its binary character through the dependence on

temperature and salinity. From a computational

viewpoint, such a divorce also proves essential for un-

derstanding how to design algorithms that are compu-

tationally more efficient and parallelizable than

sorting-based approaches.

In this section, we describe the construction of the

reference density profile. We start in section 3a by de-

riving a general equation of the form f [rr(z)]5 0, which

can be easily solved numerically for the reference den-

sity profile rr(z). In section 3b, we discuss how com-

pressibility may lead to a special situation that may arise

when solving f [rr(z)]5 0 for rr(z). We then describe the

two choices that can bemade for arriving at a solution of

this equation in section 3c.

a. An implicit equation for rr(z) based on linking
volume in physical space and thermohaline space

We now set out to define rr(z) by linking the volu-

metric properties of the ocean stratification to the

thermophysical properties of seawater in temperature–

salinity (thermohaline) space. This is done for aBoussinesq

ocean at some instant in time t, with potential or Con-

servative Temperature Q(x, y, z) and practical or Ab-

solute Salinity S(x, y, z) assumed to be given as functions

of longitude x, latitude y, and depth z increasing upward,

with the ocean surface being located at z5 0. For brevity,

we omit the time dependence in the following. In this

paper, the density of a fluid parcel is estimated using the

nonlinear equation of state of Jackett and McDougall

(1995), which is defined in terms of potential temperature,

practical salinity, and pressure.

As we illustrate below, the idea underlying our ap-

proach is that the volume of seawaterV(zl, zu) occupied

between two arbitrary levels zl # zu can be written

equivalently either in physical or thermohaline space. In

physical space, V(zl, zu) can be written as

V(zl, zu)5

ðz
u

z
l

A(z) dz , (27)

where A(z) is the area of the ocean at a given depth z,

which can be obtained from the knowledge of the ocean

bathymetry by defining depth H(x, y) as a function of

horizontal position (x, y). To understand how to obtain

an expression for V(zl, zu) in thermohaline space, it is

necessary to construct the normalized volume frequency

distribution function p(Q, S), such that p(Q0, S0)dQdS

represents the volume fraction of the water masses in

the region of the temperature–salinity domain [S0, S0 1
dS]3 [Q0, Q0 1 dQ] and satisfies the normalization

condition

ðS
max

S
min

ðQ
max

Q
min

p(Q, S) dQdS5 1, (28)

where the thermohaline domain [Smin, Smax]3
[Qmin, Qmax] is assumed to contain all possible Q, S

values encountered in the ocean. In other words, the

normalized volume frequency distribution function

p(Q, S) is constructed by adding up the volume of all

grid cell boxes of a discrete global ocean grid with values

of Q, S within the range [S0, S0 1 dS]3 [Q0, Q0 1 dQ]

and then dividing by the total ocean volume. Assuming

that rr(zu) is known, thenV(zl, zu) must by construction

occupy the volume between the two isopycnals of

equations r[S, Q, p0(zl)]5 rr(zl) and r[S, Q, p0(zu)]5
rr(zu) in (Q, S) space.

In thermohaline space, an isopycnal r at constant

pressure p is best viewed as the locus in (Q, S) space

satisfying the equation S5 S(Q, r, p), where the func-

tion S(Q, r, p) can be obtained by inverting the equa-

tion of state r5 r(S, Q, p), as illustrated in Fig. 1. Note

that because of the nonlinearity in the function

r5 r(S, Q, p), a well-defined, one-to-one mapping

function Q5Q(S, r0, p) cannot be obtained. In this

paper, the function of state S5 S(Q, r, p) is referred to

as a ‘‘salinity curve’’ and is obtained by inverting the

equation of state by Jackett andMcDougall (1995). This

makes it possible to describe the isopycnals r5 rr(zl)

and r5 rr(zu) as two salinity curves with equations

S5 S[Q, rr(zl), p0(zl)]5 ~S(Q, zl) and S5 S[Q, rr(zu),

p0(zu)]5 ~S(Q, zu), respectively. Note that because both

rr(z) and p0(z) depend on z only, the salinity curve of

equation S5 S[Q, rr(z), p0(z)]5 ~S(Q, z) can be viewed
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as a function of Q and z alone, which is indicated by the

tilde over S. As a result, a mathematical expression for the

volume V(zl, zu) in thermohaline space can be written as

V(zl, zu)5VT

ðQ
max

Q
min

s(Q; zl, zu) dQ , (29)

where VT is the total ocean volume, defined by

VT 5

ð0
2H

max

A(z) dz , (30)

while the function s(Q; zl, zu) represents the volume

fraction contained between zu and zl at fixed Q and is

given by

s5

8><
>:
ð ~S(Q,z

l
)

~S(Q,z
u
)

p(Q, S) dS , if ~S(Q, zl).
~S(Q, zu)

0, if ~S(Q, zl),
~S(Q, zu) .

(31)

The justification for Eq. (31) arises from the fact that

while the two salinity curves ~S(Q, zl) and ~S(Q, zu) are in

general well separated, and such that ~S(Q, zl).
~S(Q, zu) whenever zl , zu, these two curves may nev-

ertheless occasionally intersect in regions where the

reference level zr(Q, S) is multivalued and associated

with multiple LNBs, as we discuss later. When the two

salinity curves intersect, their intersection point (Qc, Sc)

is singular and can be shown to be associated with

a vanishing squared buoyancy frequencyN2
r (Qc, Sc)5 0.

Because the integral Eq. (29) becomes ambiguous in

regions where salinity curves intersect (discussed in

section 3b), defining s as per Eq. (31) is one way to

avoid the ambiguity and the double counting of water

masses and allows the bottom-up and top-down ap-

proaches discussed below to be connected with the

bottom-up and top-down sorting strategies discussed

later in the text.

Equation (29) is a key result of this paper, for it shows

that if rr(zu) is known, then Eqs. (29) and (27) together

provide an implicit equation of the form

f [rr(zl)]5 0, (32)

which can be easily solved for rr(zl) using a numerical

root searching method. The overall approach is feasible

because the reference density rr(z) is known a priori

both at the ocean surface (z5 0), where it is equal to the

lowest possible density rmin, as well as at the maximum

ocean depth z52Hmax, where it must be equal to the

maximum possible density value rmax. Therefore, the

corresponding bounding salinity curves S5 S[Q, rmin,

p0(0)] and S5 S[Q, rmax, p0(2Hmax)] in (Q, S) space are

also known, and one may start at the surface by setting

rr(zu)5 rmin and integrate toward the bottomof the ocean.

We construct a normalized volume frequency distri-

bution function p(Q, S) using the annually averaged

temperature and salinity fields from the 2009 version of

the Levitus World Ocean Atlas (WOA09; Locarnini

et al. 2010; Antonov et al. 2010). Data from theWOA09

were classified on a discretized Q, S plane with bin sizes

dQ 5 0.0058C and dS 5 0.002 practical salinity units

(psu). The WOA09 dataset is defined on a vertical grid

consisting of 33 discrete levels separated by dz varying

from 10m at the surface to 500m at the bottom of the

ocean. We use the WOA09 vertical grid but with higher

resolution in the first 10m, where we defined levels ev-

ery 1m, resulting in a vertical grid with 42 levels. Values

for thermodynamic constants were obtained from

McDougall and Barker (2011), and we used gravity g 5
9.81m s22 and reference density r05 1027.0 kgm23. The

left-hand side of Eq. (29) was calculated using topog-

raphy from the gridded global relief model of Earth’s

surface inAmante and Eakins (2009), assuming a sphere

radius of R 5 6.4 3 106m. We solve Eq. (29) at each of

the 42 levels of our vertical grid by integrating from the

surface toward the bottom of the ocean. The reference

density profile obtained this way is shown in Fig. 2. In the

remainder of this paper, we will discuss the physical

properties of this profile.

FIG. 1. Illustration of the solution of Eq. (29). Color contours are

isopycnals at a depth of 125m, with in situ density (kgm23) in-

dicated by the colorbar. The thick black line is the isopycnal with

r(Q, S, z52100m)5 rr(z52100m). The thin black line is the

isopycnal with r(Q, S, z52125m)5 rr(z52100m). The dashed

line is the isopycnal with r(Q, S, z52125m)5 rr(z52125m)

which results from solving Eq. (29); the fraction of the ocean vol-

ume contained between the depths 100 and 125m is equal to the

integral of p(Q, S) represented by the shaded region.
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b. Effects of compressibility: Intersection of salinity
curves

For a given target depth z5 zu, let us consider the

isopycnal r5 rr(z). As mentioned above, the latter is

most conveniently described in terms of the salinity

curve S5 S[Q, rr(z), p0(z)]. Let us now move toward

the next target depth obtained as described above,

z1 dz5 zl, associated with the isopycnal r5 rr(z1 dz)

and salinity curve S5 S[Q, rr(z1 dz), p0(z1 dz)]. We

are now interested in what controls the separation be-

tween these two salinity curves and, in particular,

whether these two curves can intersect and what the

conditions are for them to intersect.

Using the approximations rr(z1 dz)’ rr(z)1
[›rr(z)/›z]dz and p0(z1 dz)’ p0(z)2 r0gdz, it follows

that

S[Q, rr(z1dz), p0(z1 dz)]

’ S[Q, rr(z), p0(z)]1
›S

›r

����
Q,p

›rr(z)

›z
dz2

›S

›p

����
Q,r

r0gdz ,

(33)

which implies that, to leading order, the distance

dS5 ~S(Q, z1dz)2 ~S(Q, z) is given by

dS’

"
›S

›r

����
Q,p

›rr(z)

›z
2 r0g

›S

›p

����
Q,r

#
dz . (34)

The derivatives ›S/›r and ›S/›p are easily obtained by

differentiating the equation of state for density, namely,

dr5
›r

›S

����
Q,p

dS1
›r

›Q

����
S,p

dQ1
›r

›p

����
Q,r

dp ,

which yields

›S

›r

����
Q,p

5

�
›r

›S

����
Q,p

�21

,
›S

›p

����
Q,r

52

›r

›p

����
Q,r

›r

›S

����
Q,p

52
1

›r

›S

����
Q,p

c2s

,

(35)

where c2s is the squared speed of sound. As a result, it

follows that

dS’
1

›r

›S

����
Q,p

�
›rr(z)

›z
1

r0g

c2s

�
dz52

1

gb
N2

r dz , (36)

where N2
r , the squared buoyancy frequency, N2

r 5
2(g/r0)[(›rr/›z)1 r0g/c

2
s ] [Eq. (10)]. Equation (36) in-

dicates that the distance separating two isopycnals and

the tilt between them are controlled by the stability of

the reference state. Since c2s andN2
r are functions ofQ, S

and p0(z), they can vary along a given isopycnal, as can

dS, causing the isopycnal rr(z1 dz) to tilt with respect to

isopycnal rr(z). For a given tilt, if the separation be-

tween the two isopycnals is large enough, the isopycnals

rr(z) and rr(z1 dz) are well separated in the sense that

they do not intersect, as shown in Fig. 1. However, if the

FIG. 2. (top) Reference density profile rr obtained with the

top-to-bottom sorting scheme using the highest resolution

possible. Also shown are the reference density profiles obtained

with the volume frequency distribution method using the ver-

tical resolution of the WOA09 data (with resolution varying

between Dz 5 1 m at the surface and 500 m at depth), 10 and

0.1 m as indicated. (bottom) Relative error with respect to the

top-to-bottom sorting scheme using the highest resolution

possible: 100[(rr 2 rr,sorted)/rr,sorted]. The relative error is 0 at the

surface and at the bottom (by construction). Note that the limits

of the horizontal axis are set to show the range of values of

relative errors that occur below z 5 220 m. Within 20 m of the

surface, the relative error peaks to about 0.45% for 42 levels

upward and downward, 6.5 3 1023% for dz 5 10 m, and 0.75%

for dz 5 0.1 m.
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tilt is large enough, the isopycnals could intersect as il-

lustrated in the case shown in Fig. 3. The separation

between isopycnals is dictated by Eq. (29) and by the

relative volume of the ocean contained between rr(z)

and rr(z1 dz) as illustrated in Fig. 4. For the WOA09

annual-mean climatology, Fig. 4 shows that a large vol-

ume of the ocean is concentrated in a very small region

in Q, S space. When this large volume of the ocean is

somewhere between isopycnals rr(z) and rr(z1 dz) in

Fig. 3, the separation between these isopycnals, specifi-

cally dz, does not have to be very large for Eq. (36) to be

satisfied.

Mathematically, N2
r (Q, S)5 0 defines a caustic line in

thermohaline space that separates the region N2
r . 0,

where the curves do not intersect, from a region where

zr(Q, S) can have up to three possible values (this will be

discussed in more detail in section 4).

c. Top-down versus bottom-up approaches

There are two ways to construct rr(z) based on Eqs.

(27) and (29). Since rr(z) is known at the surface, one

may use a top-down approach by starting at the ocean

surface and integrating downward. Alternatively, and

since rr(z) is also known at the bottom of the ocean,

a bottom-up approach may be implemented in which

integration is carried out starting at the bottom and in-

tegrating upward. We will see later in section 5 that

differences between these two approaches are small.

d. Topographic barriers

Topographic enclosures may trap dense fluids and

isolate them from flowing into other ocean basins. The

effects that topographic barriers may have on APE or

the reference state are ignored here in the sense that all

parcels are treated as if they were all in the same ocean

basin. The reader is referred to Stewart et al. (2014) for

a more detailed discussion of the effects of topographic

barriers.

4. Position of a water parcel in the reference state

The reference position occupied by a fluid parcel is the

depth zr at which the in situ density of the parcel brought

adiabatically (and conserving salinity) to that level is

equal to the reference density or

r[Q(x, y, z), S(x, y, z),p0(zr)]5 rr(zr) . (37)

From this relation it is clear that the reference position

of the fluid parcel is independent of the path taken to

reach that position and hence that the buoyancy forces

are conservative. The depth level zr is referred to as the

LNB by Tailleux (2013). Equation (37) defines zr(S, Q)

as a function of S and Q and is illustrated graphically in

Fig. 5.

Two distinct regions can be identified in the reference

state profile rr(z) obtained with the WOA09 annual-

mean climatology (Fig. 5, lower panel). In the upper

1 km of the reference state profile, the adiabatic change

in in situ density with depth of a water parcel occupying

FIG. 3. Illustration of the solution of Eq. (29) in a region of inter-

secting isopycnals. Color contours are isopycnals at a depth of 2500m,

with in situ density (kgm23) indicated by the colorbar. The thick

black line is the isopycnal with r(Q, S, z522 km)5 rr(z522 km).

The isopycnal with r(Q, S, z522:5 km)5 rr(z522 km) lies out-

side the range of this figure. The dashed line is the isopycnal with

r(Q, S, z522:5 km)5 rr(z522:5 km) which results from solving

Eq. (29); the fraction of the ocean volume contained between the

depths 2 and 2.5 km is equal to the integral ofp(Q, S) represented by

the shaded region.

FIG. 4. Volume frequency distribution p(Q, S) in the region with

the highest volume concentration (color, logarithmic scale); 8.953
1026% of the ocean has p(Q, S), 13 10210. Contour lines are

isopycnals rr(z) every 0.5 km as in the upper panel of Fig. 5 and in

Fig. 6. The leftmost isopycnal corresponds to rr(z521 km).White

areas indicate p(Q, S)5 0.
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a given level is significantly smaller than the rate at

which the reference density increases with depth:

j›r/›zj5 jr0g/c2s j � jdrr/dzj, so that N2
r ’2(g/r0)r

0
r(z)

is dominated by the vertical derivative of rr(z). Ac-

cording to Eq. (36), this corresponds to a regime where

the salinity curves and isopycnals are well separated. In

the region where 24 , z , 21 km on the other hand,

j›r/›zjQ,Sj5 r0g/c
2
s becomes of the same order as jr0r(z)j.

As a result, N2
r becomes relatively small and can even

vanish, resulting in the salinity curves and isopycnals

approaching each other and even intersecting, as illus-

trated in Figs. 3 and 4.

The condition N2
r 5 0 defines a caustic line in (Q, S),

represented by the black line in Fig. 6, which separates

the thermohaline space into two regions, the first where

the LNB Eq. (37) has only one possible stable solution

with N2
r . 0 everywhere and the second where multiple

solutions to the LNB equation exist. In the latter region

(which we will refer to as the overlap region, seen in the

upper panel of Fig. 5 and detailed in Fig. 6), we find that

in general the LNB equation has up to three possible

solutions, two being stable and associated with N2
r . 0,

and one unstable and associated with N2
r , 0. More

specifically, we find a stable and shallow solution zr1, an

unstable intermediate solution zr2, and a stable deep

solution zr3. On the edges of the overlap region, Eq. (37)

has two roots zr1 and zr2, only one of which is statically

stable, namely, the deepest one zr2.

The existence of the overlap region and two stable

solutions explains why, in general, the bottom-up and

top-down algorithms discussed previously yield two

FIG. 5. (top) The reference state represented as a three-

dimensional surface as a function of Q, S by plotting isopycnal

curves rr(z) at depths spaced every 0.5 km. (bottom) The solid

black curve shows the same reference state represented as a one-

dimensional function of z. In the lower panel, in situ density is

plotted for the three points shown in the upper panel: (Q, S) 5
(22:0, 34:12), (1:112, 34:69), and (20:0, 37:0) using dashed–dotted,

dotted, and dashed lines, respectively.

FIG. 6. (top)Detail of the overlap region, which is outlined by the

black line. Depth contours are shown in color every 100m. Point

(Q, S) 5 (22:0, 34:12) from Fig. 5 is shown as a black dot. (bot-

tom) Cross sections at constant Q from 22.58C (left curve) and

higher, every 0.58C, illustrating the multiple values of zr for parcels

within the overlap region.
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distinct reference density profiles. This is because the

top-down approach naturally selects the stable solution

with the largest zr (which tends to have larger N2
r ). As

a result, the top-down approach can be regarded as

yielding a more stable reference state than the bottom-

up approach.

Based on our analysis of the WOA09 annual-mean

climatology, we find that the volume of water masses

found in the overlap region represents a negligible

fraction of the overall ocean volume. It follows that the

reference position for a large majority of the fluid par-

cels is unique and stable. The volume of the water par-

cels inside the overlap region is 0.0023% of the global

ocean volume in the WOA09 dataset. The vast majority

of these water parcels are Antarctic surface waters, in

the Southern Ocean south of 608S, with the remaining

volume located in the Arctic Ocean (Figs. 7, 8). All

parcels with three possible reference levels are within

the upper 600m of the surface of the ocean, most of

them above 200m (Fig. 7). In other words, their actual

location is at much shallower depths than their shallow

reference level zr1 between the depths of 1.5 and 2.5 km

(Figs. 5, 6). For these water parcels to reach the deep

reference level zr3, they would need to use extra energy

to go below zr2. Therefore, the shallow level is more

energetically accessible, and we choose zr 5 zr1 as the

reference level for the parcels in the overlap region.

Cabbeling, the densification that occurs when water

masses with differentQ, Smix, results from the fact that

the isodensity curves inQ, S space are curved. Mixing of

any pair of water parcels that lie on the same isopycnal

can lead to some level of cabbeling, regardless of where

these parcels lie on the reference state curve. Our

analysis gives an indication of the conditions under

which densification from cabbeling can have the largest

effects on local and global APE and on the dynamics of

the circulation in the ocean. Cabbeling from mixing

between water masses that have a position on the ref-

erence state curve inside the overlap region and water

masses of slightly higher salinity, with a position on the

reference state curve outside of this region (Fig. 6), can

lead to drastic changes in zr. Large changes in zr resulting

from the mixing of these parcels would lead to large

changes in buoyancy [Eq. (6)] and APE density [Eq. (7)]

in the regions of the ocean shown in Figs. 7 and 8.

By systematically implementing the procedure to

obtain the reference level described so far, we are able to

calculate zr(x, y, z) for the WOA09 annual-mean cli-

matology. The results of these calculations have a re-

markable resemblance to the calculations by Saenz et al.

(2012) for an idealized ocean basin with realistic forcing.

Water parcels with the deepest reference level (lowest

zr) and the largest available potential energy density Ea

FIG. 7. Zonally integrated volume (m3) of water parcels with

multiple positions in the reference state profile for water masses in

the ocean, all of which are located within the depth extent shown in

this figure. White indicates a volume identically equal to zero.

FIG. 8. Depth-integrated volume of water parcels with multiple

positions in the reference state profile for water masses in the (top)

South and (bottom) North Poles. Parallels are drawn every 108.
White indicates a volume identically equal to zero.
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defined in Eq. (7) are at the surface of the Southern

Ocean in the Weddell Sea close to the Antarctic Pen-

insula (left and right upper panels of Figs. 9 and 10, re-

spectively) and in the western part of the Ross Sea (left

and right upper panels of Fig. 9 and lower panels of

Fig. 10, respectively), where zr ,24 km. In the rest of

the Southern Ocean, the reference levels vary between

21 and24 km, with most of the surface waters having zr
toward the shallower end of this range of depths. This is

consistent with the regions where Antarctic Bottom

Water (AABW) is generated and with the depths at

which this watermass is found in the ocean. In theArctic

Ocean, the regions with the deepest reference level and

highest available potential energy density are in the

Greenland Sea and the Barents Sea, where zr can be

deeper than about 22.5 km, consistent with the regions

where North Atlantic Deep Water (NADW) originates

and with the depth at which this water mass is found in

the ocean. The region of confluence between the Arctic

Ocean and the North Atlantic Ocean and the Labrador

Sea (Figs. 9, 10) has intermediate values of available

potential energy density and reference levels of up to

about21km. In the Mediterranean Sea, off the coast of

France and in the Adriatic Sea, the reference level can

reach depths of21 and21.5 km, respectively. In the rest

of the surface of the ocean, the reference level is within

500m of the surface of the ocean (Fig. 10). The spatial

distribution of zr is broadly consistent with the spatial

distribution of available potential energy density Ea.

The rate of APE production by surface buoyancy

fluxes is given by Eq. (25):

G(A)5

ð
S

"
gazrQ

cp
2 r0gzrbS0(E2P)

#
dS ,

which reduces to the termFb2 in Hughes et al. (2009) for

a linear equation of state. Our results suggest that in the

regions shown in Fig. 9, where water parcels have a large

z2 zr and where surface buoyancy fluxes are large (i.e.,

in the Weddell Sea close to the Antarctic Peninsula, in

the western part of the Ross Sea, and in the Greenland

Sea and Barents Sea), there can be large sources of

available potential energy, and thus of mechanical en-

ergy, to the global overturning circulation (Saenz et al.

2012).

FIG. 9. (left) The reference level zr, and (right) available potential energy density Ea for water parcels on the surface

of the ocean in the (top) South and (bottom) North Poles. Latitude circles are drawn every 108.
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5. The reference configuration obtained by sorting
water parcels

The procedures to calculate rr(z) and zr discussed so

far can also be understood by interpreting them from the

perspective of adiabatic and isohaline sorting of water

parcels. Consider a scheme that sorts water parcels,

where each water parcel corresponds to a grid cell vol-

ume from a discretized ocean volume, and assume that

sorting is done from the top of the ocean to the bottom,

assigning the lightest available water parcel to each

level. Consider the situation in which the water column

has been sorted from the surface down to cell k at level

z5 zk, where it has density rk. The pressure on the up-

per face of level k1 1 is p52gr0(zk 1 0:5Dzk), where
Dzk is the thickness of level k after being ‘‘flattened’’ out

to occupy the volume of the ocean at that level. This

pressure is used to calculate the density that the un-

sorted parcels would have if placed at level k1 1. The

water parcels that remain to be sorted are those for

which S# S[Q, rr(zk), zk] in Fig. 1. The parcel with the

smallest density, parcelm, is assigned to level k1 1. The

temperature and salinity of this parcel Qm, Sm corre-

spond to a class with volume fraction pm 5
p(Qm, Sm)5Vm/VT , assuming that each water parcel

has a unique p(Q, S) class [this is true for the WOA09

annual-mean climatology we analyzed; however, parcels

with the same p(Q, S) class can be lumped together into

a single parcel]. Assigning the parcel with the smallest

density to level k1 1 is equivalent to satisfying the dis-

crete version of Eq. (29) with the most accurate vertical

step size Dz possible, dictated by the volume of grid cell

m divided by the area of the ocean at level k, A(zk).

The special case (extremely unlikely, however, as we

have found with the WOA09 data) in which more than

one water parcel has the same density at level k1 1 is

dealt with as follows. Assume that there are several

water parcels with different Q, S values that have the

same density at level k1 1. On a given isopycnal, com-

pressibility increases monotonically with decreasing

Conservative Temperature [as illustrated in Fig. 11,

calculated using subroutines in McDougall and Barker

(2011)]. Sorting these water parcels by compressibility

and placing the least compressible one at the shallowest

level and the most compressible one at the deepest level

results in the lowest potential energy state possible.

By assigning a parcel to a given level k, an adiabatic

sorting scheme is equivalent to solvingEq. (37) for rr(zr)

and obtaining zr simultaneously. When a water parcel in

the overlap region is chosen to occupy a level, it cannot

be included in any of the remaining sorting iterations. In

terms of the continuous integration of Eq. (29), this

means that when solving for rr(zl), regions with dS, 0

inside the overlap region (Fig. 6) should not be included

in the integration. Thus, when sorting from the surface

toward the bottom of the ocean, water parcels in the

overlap region are assigned to their shallowest reference

level. Similarly, in solving Eq. (29) by integrating from

FIG. 10. Meridional cross sections of the (left) reference level zr and (right) available potential energy density Ea at

(top) 47.58W and (bottom) 172.58E.
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the bottom of the ocean toward the surface, steps with

dS. 0 should not be taken. Sorting in this direction as-

signs water parcels with Q, S in the overlap region to

their deepest reference level. Recall that the shallowest

stable reference level is the most energetically accessi-

ble. Therefore, sorting from top to bottom is preferred.

As a result, when the above restrictions are enforced,

the reference density curve obtained by integrating Eq.

(29) with dz. 0 results in a profile different to when the

integration is performed with dz, 0 (Fig. 2). However,

since the volume of the ocean within the overlap region

is so small, this difference is negligible, and the profiles

are indistinguishable. The potential energy of the ref-

erence state PEr in Eq. (13), or background potential

energy, obtained for the WOA09 annual-mean clima-

tology by sorting from the surface toward the bottom is

28.394 82 3 1025 J, which is 1.4 3 1024 % higher than

PEr obtained by sorting from the bottom toward the top.

This difference is well within the uncertainty of the data

of any available dataset, either from measurements or

simulations.

If the top-to-bottom sorting scheme and the volume

integration procedure solving Eq. (29) each use the

highest possible vertical resolution, given by the volume

of each individual water parcel grid cell divided by the

area of the ocean at each level, the difference between

the two methods should be accounted for by the differ-

ences induced by not including parcels in the overlap

region more than once in the sorting scheme. This is

confirmed in Fig. 2, which shows the reference density

profile obtained using the sorting scheme at the highest

resolution possible, along with the four other reference

density profiles obtained as follows: with the volume

frequency distribution method by integrating from the

bottom toward the top onto 42 levels and with the

volume frequency distribution method by integrating

from the top toward the bottom onto 42 levels and onto

levels spaced at 10 and 0.1m. Since the overlap region

obtained using the WOA09 data is so small, the dif-

ference between the reference density profiles ob-

tained with high vertical resolution with each method

is very small, as shown in the bottom panel of Fig. 2.

The error induced by coarser-resolution calculations is

also small.

Existing sorting schemes are computationally very

expensive. For example, the most accurate sorting-

based approach one can conceive of uses as many tar-

get depths Np as there are parcels to sort, namely, the

total number of grid cells in the discretized ocean. Thus,

the algorithm involves Np 2 1 iterations at which the

number of candidate points at the ith iteration is

Np 1 12 i and involves O[Np(Np 1 1)/2] calls to the

equation of state. Fewer target depths can be used to

overcome this computational cost, at the expense of

uncertainty and accuracy. This is to be contrasted with

the two-step approach we present here. Using the vol-

ume integration procedure to obtain rr(z), solving Eq.

(29) for a level k1 1 requires the EOS to be evaluated

only for the parcels within a narrow region in Q, S ad-

jacent to the isopycnal curve at level k. Once rr(z) is

known, only O(10) calls to the equation of state or less

are required to solve the LNB equation [Eq. (8)] for

each parcel, and MNp � Np(Np 1 1)/2 calls to the

equation of state are needed overall in the second ap-

proach. In addition, it is straightforward to implement

the procedure of solving the LNB for each parcel in

parallel within any existing ocean general circulation

model. As a result, the volume integration procedure

of solving Eq. (29) is a much faster computational

procedure.

6. Consequence for estimates of the ocean APE

By considering a fully compressible ocean, including

possible volume changes upon adiabatic rearrangement,

Huang (2005) previously estimated the oceanic average

APE to be 624.2 Jm23. Since the total ocean volume is

approximately Vocean ’ 1:33 1018 m3, this implies that

the total APE is 8.113 1020 J. In contrast, by computing

the APE density and estimating its volume integral, we

estimate that the total APE is 1.083 1021 J, which yields

an average APE value of 834 Jm23 (assuming the same

value for Vocean). The estimate by Huang (2005) is about

25% lower. The reason for this is unclear, however,

FIG. 11. Conservative Temperature and Absolute Salinity dia-

gram for in situ density (kgm23; contours) and isentropic com-

pressibility (Pa21; color) at a pressure of 2000 db, from the

International Thermodynamic Equation of Seawater—2010

(TEOS-10).
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because our estimate is also based on the Levitus

annual-mean climatology (although for the WOA09

database). From a numerical viewpoint, the estimate for

the total APE in Huang (2005) is based on computing

the difference in potential energy between the actual

state and the reference state, that is, between two ex-

tremely large numbers, which is potentially ill condi-

tioned and prone to numerical errors [see also the

relevant discussion by Winters and Barkan (2013)]. In

contrast, our approach is based on integrating only rel-

atively small positive numbers and is therefore expected

to be better conditioned numerically. Whether this is

sufficient to account for the differences between our

estimates for APE and that of Huang (2005) is unclear

and warrants further study. This is beyond the scope of

this work, as the computational issues associated with

deriving accurate estimates of APE require a full sepa-

rate study of a more technical nature.

7. Summary and conclusions

Wehave discussed the effects that compressibility and

nonlinearities of the equation of state of seawater have

on the reference state and have illustrated these effects

using annual climatological data for temperature and

salinity in the ocean. Most of the water parcels in the

ocean have a single, well-defined reference level in the

reference state. Variations in compressibility with tem-

perature and salinity cause a very small volume fraction

of the ocean to have up to two stable positions in the

reference state profile. We argue that because these

volumes are located at high latitudes and shallow

depths, one reference level, the shallowest, is energeti-

cally more accessible.

Our formulation, throughEqs. (29) and (32), allows us

to strongly constrain (to a desired level of precision) the

range of temperature and salinity properties that a water

parcel at a given level must have in the reference state.

Because we know either the overall minimum (surface)

or maximum (bottom) density in the reference state

ocean, we can proceed to efficiently construct the ref-

erence density profile by progressively filling the ocean

volume adiabatically either downward from the surface

or upward from the bottom.

We show that the adiabatic sorting schemes are

equivalent to classifying water masses using the volume

frequency distribution in temperature and salinity space,

provided that the latter accounts for the water parcels

that have been assigned a location in the reference

profile. Because of the multiple equilibrium positions

that some water parcels may have, different methods

can yield different reference states. The differences

between these profiles are so small that, within the

uncertainty of available data from simulations and from

climatologies, the reference state profile can be thought

of as well defined for all practical purposes. Uniqueness

can be enforced if one chooses to define the reference

state as that obtained by filling the ocean volume

downward from the surface, which we have argued is

more energetically accessible than the one resulting

from filling the ocean upward from the bottom of the

ocean.

Our work here, along with the results in Stewart et al.

(2014), provides the foundation for the investigation of

the available potential energy budget of the ocean cir-

culation under realistic conditions.
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