7,676 research outputs found

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity

    Get PDF
    We introduce a new effect in the neutrino oscillation phase which shows the neutrino-antineutrino oscillation is possible under gravity even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. For Majorana neutrinos, this oscillation is expected to affect significantly the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis. On the other hand, in early universe, in presence of various lepton number violating processes, this oscillation, we argue, might lead to neutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes.Comment: 15 pages; Accepted for publication in Classical and Quantum Gravit

    Dynamics of Perfectly Wetting Drops under Gravity

    Full text link
    We study the dynamics of small droplets of polydimethylsiloxane (PDMS) silicone oil on a vertical, perfectly-wetting, silicon wafer. Interference videomicroscopy allows us to capture the dynamics of these droplets. We use droplets with a volumes typically ranging from 100 to 500 nanolitres (viscosities from 10 to 1000 centistokes) to understand long time derivations from classical solutions. Past researchers used one dimensional theory to understand the typical t1/3t^{1/3} scaling for the position of the tip of the droplet in time tt. We observe this regime in experiment for intermediate times and discover a two-dimensional, similarity solution of the shape of the droplet. However, at long times our droplets start to move more slowly down the plane than the t1/3t^{1/3} scaling suggests and we observe deviations in droplet shape from the similarity solution. We match experimental data with simulations to show these deviations are consistent with retarded van der Waals forcing which should become significant at the small heights observed

    Structural Analysis of Test Flight Vehicles with Multifunctional Energy Storage

    Get PDF
    Under the NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautical Solutions (CAS) project, NASA Glenn Research Center has been leading Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS) research efforts. The technology of integrating load-carrying structures with electrical energy storage capacity has the potential to reduce the overall weight of future electric aircraft. The proposed project goals were to develop M-SHELLS in the form of honeycomb coupons and subcomponents, integrate them into the structure, and conduct low-risk flight tests onboard a remotely piloted small aircraft. Experimental M-SHELLS energy-storing coupons were fabricated and tested in the laboratory for their electrical and mechanical properties. In this paper, finite element model development and structural analyses of two small test aircraft candidates are presented. The finite element analysis of the initial two-spar wing is described for strain, deflection, and weight estimation. After a test aircraft Tempest was acquired, a load- deflection test of the wing was conducted. A finite element model of the Tempest was then developed based on the test aircraft dimensions and construction detail. The component weight analysis from the finite element model and test measurements were correlated. Structural analysis results with multifunctional energy storage panels in the fuselage of the test vehicle are presented. Although the flight test was cancelled because of programmatic reasons and time constraints, the structural analysis results indicate that the mid-fuselage floor composite panel could provide structural integrity with minimal weight penalty while supplying electrical energy. To explore potential future applications of the multifunctional structure, analyses of the NASA X-57 Maxwell electric aircraft and a NASA N+3 Technology Conventional Configuration (N3CC) fuselage are presented. Secondary aluminum structure in the fuselage sub-floor and cargo area were partially replaced with reinforced five-layer composite panels with M-SHELLS honeycomb core. The N3CC fuselage weight reduction associated with each design without risking structural integrity are described. The structural analysis and weight estimation with the application of composite M-SHELLS panels to the N3CC fuselage indicate a 3.2% reduction in the fuselage structural weight, prior to accounting for the additional weight of core material required to complete the energy storage functionality

    Human brain shows recurrent non-canonical microRNA editing events enriched for seed sequence with possible functional consequence

    Get PDF
    RNA editing is a post-transcriptional modification, which can provide tissue-specific functions not encoded in DNA. Adenosine-to-inosine is the predominant editing event and, along with cytosine-to-uracil changes, constitutes canonical editing. The rest is non-canonical editing. In this study, we have analysed non-canonical editing of microRNAs in the human brain. We have performed massively parallel small RNA sequencing of frontal cortex (FC) and corpus callosum (CC) pairs from nine normal individuals (post-mortem). We found 113 and 90 unique non-canonical editing events in FC and CC samples, respectively. More than 70% of events were in the miRNA seed sequence—implicating an altered set of target mRNAs and possibly resulting in a functional consequence. Up to 15% of these events were recurring and found in at least three samples, also supporting the biological relevance of such variations. Two specific sequence variations, C-to-A and G-to-U, accounted for over 80% of non-canonical miRNA editing events—and revealed preferred sequence motifs. Our study is one of the first reporting non-canonical editing in miRNAs in the human brain. Our results implicate miRNA non-canonical editing as one of the contributing factors towards transcriptomic diversity in the human brain

    Growing hydrodynamic modes in Keplerian accretion disks during secondary perturbations: Elliptical vortex effects

    Get PDF
    The origin of hydrodynamic turbulence, and in particular of an anomalously enhanced angular momentum transport, in accretion disks is still an unsolved problem. This is especially important for cold disk systems which are practically neutral in charge and therefore turbulence can not be of magnetohydrodynamic origin. While the flow must exhibit some instability and then turbulence in support of the transfer of mass inward and angular momentum outward, according to the linear perturbation theory, in absence of magnetohydrodynamic effects, it should always be stable. We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed disk, consisting of elliptical vortices, gives significantly large hydrodynamic growth in such a system and hence may suggest a transition to an ultimately turbulent state. This result is essentially applicable to accretion disks around quiescent cataclysmic variables, in proto-planetary and star-forming disks, the outer region of disks in active galactic nuclei, where the gas is significantly cold and thus the magnetic Reynolds number is smaller than 10^4.Comment: 21 pages including 4 figures, aastex format; Accepted for publication in The Astrophysical Journa

    Stochastically driven instability in rotating shear flows

    Get PDF
    Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks

    Hyperfine Populations Prior to Muon Capture

    Full text link
    It is shown that the 1S level hyperfine populations prior to muon capture will be statistical when either target or beam are unpolarised independent of the atomic level at which the hyperfine interaction becomes appreciable. This assertion holds in the absence of magnetic transitions during the cascade and is true because of minimal polarisation after atomic capture and selective feeding during the cascade.Comment: (revtex, 6 preprint pages, no figures
    corecore