7,809 research outputs found

    Mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    Full text link
    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory.Comment: version to be published in Fast Track Communication in Journal of Physics A:Math. Theo

    Cross-correlating the Thermal Sunyaev-Zel'dovich Effect and the Distribution of Galaxy Clusters

    Full text link
    We present the analytical formulas, derived based on the halo model, to compute the cross-correlation between the thermal Sunyaev-Zel'dovich (SZ) effect and the distribution of galaxy clusters. By binning the clusters according to their redshifts and masses, this cross-correlation, the so-called stacked SZ signal, reveals the average SZ profile around the clusters. The stacked SZ signal is obtainable from a joint analysis of an arcminute-resolution cosmic microwave background (CMB) experiment and an overlapping optical survey, which allows for detection of the SZ signals for clusters whose masses are below the individual cluster detection threshold. We derive the error covariance matrix for measuring the stacked SZ signal, and then forecast for its detection from ongoing and forthcoming combined CMB-optical surveys. We find that, over a wide range of mass and redshift, the stacked SZ signal can be detected with a significant signal to noise ratio (total S/N \gsim 10), whose value peaks for the clusters with intermediate masses and redshifts. Our calculation also shows that the stacking method allows for probing the clusters' SZ profiles over a wide range of scales, even out to projected radii as large as the virial radius, thereby providing a promising way to study gas physics at the outskirts of galaxy clusters.Comment: 11 pages, 6 figures, 3 tables, minor revisions reflect PRD published versio

    Magnetic Diode Effect in Double Barrier Tunnel Junctions

    Full text link
    A quantum statistical theory of spin-dependent tunneling through asymmetric magnetic double barrier junctions is presented which describes bothboth ballistic and diffuse tunneling by a single analytical expression. It is evidenced that the key parameter for the transition between these two tunneling regimes is the electron scattering. For these junctions a strong asymmetric behaviour in the I-V characteristics and the tunnel magnetoresistance (TMR) is predicted which can be controlled by an applied magnetic field. This phenomenon relates to the quantum well states in the middle metallic layer. The corresponding resonances in the current and the TMR are drastically phase shifted under positive and negative voltage.Comment: 10 pages, 4 Postscript figures, submitted to Europhys. Let

    Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    Get PDF
    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, w0w_0 and waw_a, and the linear growth rate of density fluctuations by Linder's γ\gamma, independently. Dark energy models generically predict γ0.55\gamma \approx 0.55, while the DGP model γ0.68\gamma \approx 0.68. To determine if future imaging surveys can constrain γ\gamma within 20 percent (or Δγ<0.1\Delta\gamma<0.1), we perform the Fisher matrix analysis for a weak lensing survey such as the on-going Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the Figure of Merit (FoM) as a function of the exposure time \texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around \texp\simeq {\rm several}\sim 10 minutes; a shallow and wide survey is preferred to constrain the γ\gamma parameter. While Δγ<0.1\Delta\gamma < 0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like WFMOS and/or future CMB observations.Comment: 18 pages, typos correcte

    Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties

    Full text link
    We develop a new method of combining cluster observables (number counts and cluster-cluster correlation functions) and stacked weak lensing signals of background galaxy shapes, both of which are available in a wide-field optical imaging survey. Assuming that the clusters have secure redshift estimates, we show that the joint experiment enables a self-calibration of important systematic errors including the source redshift uncertainty and the cluster mass-observable relation, by adopting a single population of background source galaxies for the lensing analysis. It allows us to use the relative strengths of stacked lensing signals at different cluster redshifts for calibrating the source redshift uncertainty, which in turn leads to accurate measurements of the mean cluster mass in each bin. In addition, our formulation of stacked lensing signals in Fourier space simplifies the Fisher matrix calculations, as well as the marginalization over the cluster off-centering effect, the most significant uncertainty in stacked lensing. We show that upcoming wide-field surveys yield stringent constraints on cosmological parameters including dark energy parameters, without any priors on nuisance parameters that model systematic uncertainties. Specifically, the stacked lensing information improves the dark energy FoM by a factor of 4, compared to that from the cluster observables alone. The primordial non-Gaussianity parameter can also be constrained with a level of f_NL~10. In this method, the mean source redshift is well calibrated to an accuracy of 0.1 in redshift, and the mean cluster mass in each bin to 5-10% accuracies, which demonstrates the success of the self-calibration of systematic uncertainties from the joint experiment. (Abridged)Comment: 29 pages, 17 figures, 6 tables, accepted for publication in Phys. Rev.

    A Molecular Hydrodynamic Theory of Supercooled Liquids and Colloidal Suspensions under Shear

    Full text link
    We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering function is constructed. We evaluate the solution numerically for a model of a two dimensional colloidal suspension and find that the structural relaxation time decreases as γ˙ν\dot{\gamma}^{-\nu} with an exponent ν1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the physical implications of the results.Comment: 5 pages, 1 figur

    Bi-layer Heisenberg model studied by the Schwinger-boson Gutzwiller-projection method

    Full text link
    A two-dimensional bi-layer, square lattice Heisenberg model with different intraplane(JJ_{\parallel}) and interplane(JJ_{\perp}) couplings is investigated. The model is first solved in the Schwinger boson mean-field approximation. %It is shown that order-disorder transition occurs as the interplane Coupling %is increased. The critical ratio is J_{\perp/\p=4.48J Then the solution is Gutzwiller projected to satisfy the local constraint that there should be only one boson at each site. For these wave functions, we perform variational Monte Carlo simulation up to 24×24×224 \times 24 \times 2 sites. It is shown that the N\'eel order is destroyed as the interplane coupling is increased. The obtained critical value, J/J=3.51J_{\perp}/J_{\parallel}=3.51, is smaller than that by the mean-field theory. Excitation spectrum is calculated by a single mode approximation. It is shown that energy gap develops once the N\'eel order is destroyed.Comment: 19 pages(including figure captions) RevTex3.0, 10 figures, available upon reques

    Critical fluctuations and breakdown of Stokes-Einstein relation in the Mode-Coupling Theory of glasses

    Full text link
    We argue that the critical dynamical fluctuations predicted by the mode-coupling theory (MCT) of glasses provide a natural mechanism to explain the breakdown of the Stokes-Einstein relation. This breakdown, observed numerically and experimentally in a region where MCT should hold, is one of the major difficulty of the theory, for which we propose a natural resolution based on the recent interpretation of the MCT transition as a bona fide critical point with a diverging length scale. We also show that the upper critical dimension of MCT is d_c=8.Comment: Proceedings of the workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials (17-22 September, 2006, Pisa

    Superconductivity of Quasi-Two-Dimensional Tight-Binding Electrons in a Strong Magnetic Field

    Full text link
    We have investigated the transition temperature Tc(H)T_{\rm c}(H) of superconductiv ity in quasi-two-dimensional (Q2D) tight-binding electrons in a strong magnetic field. When the magnetic field is parallel to 2D conducting plane, Tc(H)T_{\rm c}(H) of the Q2D superconductor is shown to increase in an oscillatory manner as the magnetic field becomes large and to reach Tc(0)T_{\rm c}(0) in a strong magnetic f ield limit for the spin-triplet superconductor. We consider the cases of on-site and nearest sites attractive interaction, and calculate the magnetic field depe ndences of the transition temperature for various types of symmetry. The first o rder transition from pyp_y-wave to pxp_x-wave is shown to occur at H35H\sim 35T w hen the magnetic field is parallel to the yy direction, which will be observed in a triplet superconductor, Sr2_2RuO4_4.Comment: 13pages,6figure
    corecore