21,759 research outputs found
Multiloop Manual Control of Dynamic Systems
Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented
Passive propellant system
The system utilizes a spherical tank structure A separated into two equal volume compartments by a flat bulkhead B. Each compartment has four similar gallery channel legs located in the principal vehicle axes, ensuring that bulk propellant will contact at least one gallery leg during vehicle maneuvers. The forward compartment gallery channel legs collect propellant and feed it into the aft compartment through communication screens which protrude into the aft compartment. The propellant is then collected by the screened gallery channels in the aft compartment and supplied to the propellant outlet. The invention resides in the independent gallery assembly and screen structure by means of which propellant flow from forward to aft compartments is maintained. Liquid surface tension of the liquid on the screens is used to control liquid flow. The system provides gas-free propellants in low or zero-g environments regardless of axial accelerations and propellant orientation in bulk regions of the vessel
Recommended from our members
Seasonal changes in the transport of pollutants into the Arctic troposphere-model study
Excimer lasers
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage
Theory of I-V Characteristics of Magnetic Josephson Junctions
We analyze the electrical characteristics of a circuit consisting of a free
thin-film magnetic layer and source and drain electrodes that have opposite
magnetization orientations along the free magnet's two hard directions. We find
that when the circuit's current exceeds a critical value there is a sudden
resistance increase which can be large in relative terms if the currents to
source or drain are strongly spin polarized and the free magnet is thin. This
behavior can be partly understood in terms of a close analogy between the
magnetic circuit and a Josephson junction
General-Relativistic Curvature of Pulsar Vortex Structure
The motion of a neutron superfluid condensate in a pulsar is studied. Several
theorems of general-relativistic hydrodynamics are proved for a superfluid. The
average density distribution of vortex lines in pulsars and their
general-relativistic curvature are derived.Comment: 18 pages, 1 figure
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Turbojet blade vibration data acquisition design and feasibility testing
A turbojet blade vibration data acquisition system was designed to allow the measurement of blade vibration. The data acquisition system utilizing 96 microprocessors to gather data from optical probes, store, sort and transmit to the central computer is described. Areas of high technical risk were identified and a two-microprocessor system was breadboarded and tested to investigate these areas. Results show that the system was feasible and that low technical risk would be involved in proceeding with the complete system fabrication
Superconductivity in SrNi2As2 Single Crystals
The electrical resistivity \rho(T) and heat capacity C(T) on single crystals
of SrNi2As2 and EuNi2As2 are reported. While there is no evidence for a
structural transition in either compound, SrNi2As2 is found to be a bulk
superconductor at T_c=0.62 K with a Sommerfeld coefficient of \gamma= 8.7
mJ/mol K^2 and a small upper critical field H_{c2} \sim 200 Oe. No
superconductivity was found in EuNi2As2 above 0.4 K, but anomalies in \rho and
C reveal that magnetic order associated with the Eu^{2+} magnetic moments
occurs at T_m = 14 K.Comment: 8 pages, 5 figure
- …
