999 research outputs found
Superconductivity in an Einstein Solid AxV2Al20 (A = Al and Ga)
A cage compound AxV2Al20 (Al10V), that was called an Einstein solid by Caplin
and coworkers 40 years ago, is revisited to investigate the low-energy, local
vibrations of the A atoms and their influence on the electronic and
superconducting properties of the compound. Polycrystalline samples with A =
Al, Ga, Y, and La are studied through resistivity and heat capacity
measurements. Weak-coupling BCS superconductivity is observed below Tc = 1.49,
1.66, and 0.69 K for Ax = Al0.3, Ga0.2, and Y, respectively, but not above 0.4
K for Ax = La. Low-energy modes are detected only for A = Al and Ga, which are
approximately described by the Einstein model with Einstein temperatures of 24
and 8 K, respectively. A weak but significant coupling between the low-energy
modes, which are almost identical to those called rattling in recent study, and
conduction electrons manifests itself as anomalous enhancement in resistivity
at around low temperatures corresponding to the Einstein temperatures.Comment: 12 pages, 5 figures, to be published in J. Phys. Soc. Jp
Recommended from our members
An agency relationship under general conditions of uncertainty: A game theory application to the doctor-patient interaction
The supply of information, particularly of bad news, in an agency relationship is a sensitive issue. We employ a game theory approach to investigate conflicts in the particular case of the doctor–patient relationship when information affects the emotions of patients. The doctor does not know the type of agent and the patient does not know how much information he is given. Hence, the paper obtains results when there is conflict, rather than common interest in the objectives of the two parties. The perfect Bayesian equilibrium describes beliefs and strategies which guarantee adherence to the doctor’s recommendation. We show also that the patient may non-adhere to the recommendation not only when the doctor fails to identify the patient’s needs but also if he falsely believes that the doctor has not done so
Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1-d
Here we use global and local magnetometry and Hall probe imaging to
investigate the electromagnetic connectivity of the superconducting current
path in the oxygen-deficient fluorine-free Nd-based oxypnictides. High
resolution transmission electron microscopy and scanning electron microscopy
show strongly-layered crystallites, evidence for a ~ 5nm amorphous oxide around
individual particles, and second phase neodymium oxide which may be responsible
for the large paramagnetic background at high field and at high temperatures.
From global magnetometry and electrical transport measurements it is clear
that there is a small supercurrent flowing on macroscopic sample dimensions
(mm), with a lower bound for the average (over this length scale) critical
current density of the order of 103 A/cm2. From magnetometry of powder samples
and local Hall probe imaging of a single large conglomerate particle ~120
microns it is clear that on smaller scales, there is better current
connectivity with a critical current density of the order of 5 x 104 A/cm2. We
find enhanced flux creep around the second peak anomaly in the magnetisation
curve and an irreversibility line significantly below Hc2(T) as determined by
ac calorimetry.Comment: 11 pages, 4 figure
Mapping the dynamic interactions between vortex species in highly anisotropic superconductors
Here we use highly sensitive magnetisation measurements performed using a
Hall probe sensor on single crystals of highly anisotropic high temperature
superconductors to study the dynamic interactions
between the two species of vortices that exist in such superconductors. We
observe a remarkable and clearly delineated high temperature regime that
mirrors the underlying vortex phase diagram. Our results map out the parameter
space over which these dynamic interaction processes can be used to create
vortex ratchets, pumps and other fluxonic devices.Comment: 7 pages, 3 figures, to be published in Supercond. Sci. Techno
Critical Fields and Critical Currents in MgB2
We review recent measurements of upper (Hc2) and lower (Hc1) critical fields
in clean single crystals of MgB2, and their anisotropies between the two
principal crystallographic directions. Such crystals are far into the "clean
limit" of Type II superconductivity, and indeed for fields applied in the
c-direction, the Ginzburg-Landau parameter k is only about 3, just large enough
for Type II behaviour. Because m0Hc2 is so low, about 3 T for fields in the
c-direction, MgB2 has to be modified for it to become useful for high-current
applications. It should be possible to increase Hc2 by the introduction of
strong electron scattering (but because of the electronic structure and the
double gap that results, the scatterers will have to be chosen carefully). In
addition, pinning defects on a scale of a few nm will have to be engineered in
order to enhance the critical current density at high fields.Comment: BOROMAG Conference Invited paper. To appear in Supercond. Sci. Tec
Evidence for Nodal superconductivity in SrScFePO
Point contact Andreev reflection spectra have been taken as a function of
temperature and magnetic field on the polycrystalline form of the newly
discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak
which disappears at the superconducting transition temperature, dominates all
of the spectra. Data taken in high magnetic fields show that this feature
survives until 7T at 2K and a flattening of the feature is observed in some
contacts. Here we inspect whether these observations can be interpreted within
a d-wave, or nodal order parameter framework which would be consistent with the
recent theoretical model where the height of the P in the Fe-P-Fe plane is key
to the symmetry of the superconductivity. However, in polycrystalline samples
care must be taken when examining Andreev spectra to eliminate or take into
account artefacts associated with the possible effects of Josephson junctions
and random alignment of grains.Comment: Published versio
Influence of carbon on intraband scattering in Mg(B1-xCx)2
We report data on the Hall coefficient (RH) of the carbon substituted
Mg(B1-xCx)2 single crystals with x in the range from 0 to 0.1. The temperature
dependences of RH obtained for the substituted crystals differ systematically
at low temperatures, but all of them converge to the value of 1.8 x 10^-10
m^3/C at room temperature. The RH(T) data together with results of the
thermoelectric power and electrical resistivity measurements are interpreted
within a quasi-classical transport approach, where the presence of four
different conducting sheets is considered. The main influence of the carbon
substitution on the transport properties in the normal state is associated with
enhanced scattering rates, rather than modified concentration of charge
carriers. Presumably the carbon substitution increases the electron-impurity
scattering mainly in the pi band.Comment: 16 pages, 3 figure
Anisotropies of the lower and upper critical fields in MgB single crystals
The temperature dependence of the London penetration depth () and
coherence length () has been deduced from Hall probe magnetization
measurements in high quality MgB single crystals in the two main
crystallographic directions. We show that, in contrast to conventional
superconductors, MgB is characterized by two different anisotropy
parameters ( and ) which strongly differ at low temperature and merge at .
These results are in very good agreement with recent calculations in weakly
coupled two bands suprerconductors (Phys. Rev. B, 66, 020509(R) (2002).Comment: 4 pages, 4 figure
- …
