237 research outputs found

    Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems

    Full text link
    The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires (QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of different generations of samples shows that the localization length has been enhanced as the growth techniques were improved. In the best samples, excitons are delocalized in islands of length of the order of 1 micron, and form a continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence of the radiative lifetime. On the opposite, in the previous generation of QWRs, the localization length is typically 50 nm and the QWR behaves as a collection of quantum boxes. These localization properties are compared to structural properties and related to the progresses of the growth techniques. The presence of residual disorder is evidenced in the best samples and explained by the separation of electrons and holes due to the large in-built piezo-electric field present in the structure.Comment: 8 figure

    Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures

    Get PDF
    An original time resolved cathodoluminescence set up has been used to investigate the optical properties and the carrier transport in quantum structures located in InGaAs/AlGaAs tetrahedral pyramids. An InGaAs quantum dot formed just below the top of the pyramid is connected to four types of low-dimensional barriers: InGaAs quantum wires on the edges of the pyramid, InGaAs quantum wells on the (111)A facets and segregated AlGaAs vertical quantum wire and AlGaAs vertical quantum wells formed at the centre and at the pyramid edges. Experiments were performed at a temperature of 92K, an accelerating voltage of 10kV and a beam probe current of 10pA. The cathodoluminescence spectrum shows five luminescence peaks. Rise and decay times for the different emission wavelengths provide a clear confirmation of the peak attribution (previously done with other techniques) to the different nanostructures grown in a pyramid. Moreover, experimental results suggest a scenario where carriers diffuse from the lateral quantum structures towards the central structures (the InGaAs quantum dot and the segregated AlGaAs vertical quantum wire) via the InGaAs quantum wires on the edges of the pyramid. According to this hypothesis, we have modeled the carrier diffusion along these quantum wires. An ambipolar carrier mobility of 1400cm2/V s allows to obtain a good fit to all temporal dependence

    Consistency of Published Results on the Pathogen Batrachochytrium dendrobatidis in Madagascar: Formal Comment on Kolby et al. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar

    Get PDF
    判型:B5,平成4年11月30日[目次]バブル消えて思うこと新任教官紹介及び挨拶一番古い新しい大学維管束植物の遺伝子発現機構の解析のための基礎的研究留学感想トピックス学生サークル紹介学生部だより保健管理センターだより卒業生だよりへルン文
    corecore