267 research outputs found

    Casimir-Polder shifts on quantum levitation states

    Full text link
    An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schr\"odinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting respectively as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose a new approximate treatment which is precise enough to discuss spectroscopy experiments aiming at tests of the weak equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.Comment: Accepted in PR

    Quantum reflection of antihydrogen from a liquid helium film

    Full text link
    We study the quantum reflection of ultracold antihydrogen atoms bouncing on the surface of a liquid helium film. The Casimir-Polder potential and quantum reflection are calculated for different thicknesses of the film supported by different substrates. Antihydrogen can be protected from anni- hilation for as long as 1.3s on a bulk of liquid 4He, and 1.7s for liquid 3He. These large lifetimes open interesting perspectives for spectroscopic measurements of the free fall acceleration of antihydrogen. Variation of the scattering length with the thickness of a film of helium shows interferences which we interpret through a Liouville transformation of the quantum reflection problem

    Microstrain analysis of titanium aluminides

    No full text
    International audienceThe aeronautic and automotive industries have shown a renewed interest in TiAl based alloys. The main reasons for such an interest are their low density (~3,8g/cm3), a good stiffness and a high strength for temperatures up to 750°C. However, these alloys exhibit, in their polycrystalline form, a poor ductility at room temperature with widely scattered values. The aim of this study is therefore to characterise their mechanical behaviour with a multiscale methodology, coupling microstructure analysis and strain field measurements. This methodology employs orientation imaging microscopy as well as digital imaging correlation techniques with an intragranular step size of a few micrometers. Two chemical compositions (47 at. % Al and 48 at. % Al) and two processing routes (casting and powder metallurgy) are studied. Thus, four different types of final microstructures are considered, from fully lamellar Ti3Al (a2) + TiAl (g) microstructure to bimodal ones composed of two-phase (a2+g) lamellar grains and monolithic g grains. Firstly, the microstructure is characterised crystallographically and morphologically. This allows the identification of a representative volume element (RVE) inside the analysed volume. Then, uniaxial mechanical tests are performed for each microstructure, and the strain fields are analysed with a multiscale approach, which determines the spatial distribution of the strain field heterogeneity with respect to the different microstructures

    Identification of crystalline behavior on macroscopic response and local strain field analysis: application to alpha zirconium alloys

    Get PDF
    The purpose of this paper is to present an identification method of the crystalline behavior of a material from a mechanical test performed on a polycrystalline sample. Because of the lack of knowledge about its crystalline behavior, this method is applied to a Zirconium alloy. This identification is based on a finite element modeling of the microstructure, and the results are compared to both the macroscopic and the microscopic experimental results. On the microscopic scale, the plastic strains are obtained using a micro-extensometry technique and the crystalline orientation using an EBSD technique. In order to validate the method, an identification is performed with only two free parameters: the evolutions of the macroscopic and microscopic errors appear to be regular and exhibit a well-defined minimum so that the parameters can be clearly identified

    The Dynamics of Ecosystems, Biodiversity Management and Social Institutions at High Northern Latitudes

    Get PDF
    Ecosystems at high latitudes are highly dynamic, influenced by a multitude of large-scale disturbances. Due to global change processes these systems may be expected to be particularly vulnerable, affecting the sustained production of renewable wood resources and abundance of plants and animals on which local cultures depend. In this paper, we assess the implications of new understandings of high northern latitude ecosystems and what must be done to manage systems for resilience. We suggest that the focus of land management should shift from recovery from local disturbance to sustaining ecosystem functions in the face of change and disruption. The role of biodiversity as insurance for allowing a system to reorganize and develop during the disturbance and reorganization phases needs to be addressed in management and policy. We emphasize that the current concepts of ecological reserves and protected areas need to be reconsidered to developp dynamic tools for sustainable management of ecosystems in face of change. Characteristics of what may be considered as customary reserves at high latitudes are often consistent with a more dynamic view of reserves. We suggest new directions for addressing biodiversity management in dynamic landscapes at high latitudes, and provide empirical examples of insights from unconventional perspectives that may help improve the potential for sustainable management of biodiversity and the generation of ecosystem services
    • 

    corecore