268 research outputs found

    Fractal Structure of Loop Quantum Gravity

    Full text link
    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.Comment: 5 pages, 5 figure

    On the semiclassical limit of 4d spin foam models

    Full text link
    We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that are constructed via coherent states. We show that in the semiclassical limit the quantum spin foam amplitudes of an arbitrary triangulation are exponentially suppressed, if the face spins do not correspond to a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.Comment: 32 pages, 5 figure

    Holomorphic Factorization for a Quantum Tetrahedron

    Full text link
    We provide a holomorphic description of the Hilbert space H(j_1,..,j_n) of SU(2)-invariant tensors (intertwiners) and establish a holomorphically factorized formula for the decomposition of identity in H(j_1,..,j_n). Interestingly, the integration kernel that appears in the decomposition formula turns out to be the n-point function of bulk/boundary dualities of string theory. Our results provide a new interpretation for this quantity as being, in the limit of large conformal dimensions, the exponential of the Kahler potential of the symplectic manifold whose quantization gives H(j_1,..,j_n). For the case n=4, the symplectic manifold in question has the interpretation of the space of "shapes" of a geometric tetrahedron with fixed face areas, and our results provide a description for the quantum tetrahedron in terms of holomorphic coherent states. We describe how the holomorphic intertwiners are related to the usual real ones by computing their overlap. The semi-classical analysis of these overlap coefficients in the case of large spins allows us to obtain an explicit relation between the real and holomorphic description of the space of shapes of the tetrahedron. Our results are of direct relevance for the subjects of loop quantum gravity and spin foams, but also add an interesting new twist to the story of the bulk/boundary correspondence.Comment: 45 pages; published versio

    A finiteness bound for the EPRL/FK spin foam model

    Full text link
    We show that the EPRL/FK spin foam model of quantum gravity has an absolutely convergent partition function if the vertex amplitude is divided by an appropriate power pp of the product of dimensions of the vertex spins. This power is independent of the spin foam 2-complex and we find that p>2p>2 insures the convergence of the state sum. Determining the convergence of the state sum for the values 0p20 \le p \le 2 requires the knowledge of the large-spin asymptotics of the vertex amplitude in the cases when some of the vertex spins are large and other are small.Comment: v6: published versio

    A spin foam model for general Lorentzian 4-geometries

    Full text link
    We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For spacelike geometries, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.Comment: 27 pages, 1 figure; v4: published versio

    Spin foams with timelike surfaces

    Full text link
    Spin foams of 4d gravity were recently extended from complexes with purely spacelike surfaces to complexes that also contain timelike surfaces. In this article, we express the associated partition function in terms of vertex amplitudes and integrals over coherent states. The coherent states are characterized by unit 3--vectors which represent normals to surfaces and lie either in the 2--sphere or the 2d hyperboloids. In the case of timelike surfaces, a new type of coherent state is used and the associated completeness relation is derived. It is also shown that the quantum simplicity constraints can be deduced by three different methods: by weak imposition of the constraints, by restriction of coherent state bases and by the master constraint.Comment: 22 pages, no figures; v2: remarks on operator formalism added in discussion; correction: the spin 1/2 irrep of the discrete series does not appear in the Plancherel decompositio

    Rectification from Radially-Distorted Scales

    Full text link
    This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from repetitions of rigidly transformed coplanar local features. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle images that contain nearly any type of coplanar repeated content. We demonstrate a principled approach to generating stable minimal solvers by the Grobner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the solvers give accurate rectifications from noisy measurements when used in a RANSAC-based estimator. The proposed solvers demonstrate superior robustness to noise compared to the state-of-the-art. The solvers work on scenes without straight lines and, in general, relax the strong assumptions on scene content made by the state-of-the-art. Accurate rectifications on imagery that was taken with narrow focal length to near fish-eye lenses demonstrate the wide applicability of the proposed method. The method is fully automated, and the code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin

    Second-order amplitudes in loop quantum gravity

    Full text link
    We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related with the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure

    Free vacuum for loop quantum gravity

    Full text link
    We linearize extended ADM-gravity around the flat torus, and use the associated Fock vacuum to construct a state that could play the role of a free vacuum in loop quantum gravity. The state we obtain is an element of the gauge-invariant kinematic Hilbert space and restricted to a cutoff graph, as a natural consequence of the momentum cutoff of the original Fock state. It has the form of a Gaussian superposition of spin networks. We show that the peak of the Gaussian lies at weave-like states and derive a relation between the coloring of the weaves and the cutoff scale. Our analysis indicates that the peak weaves become independent of the cutoff length when the latter is much smaller than the Planck length. By the same method, we also construct multiple-graviton states. We discuss the possible use of these states for deriving a perturbation series in loop quantum gravity.Comment: 30 pages, 3 diagrams, treatment of phase factor adde

    Cosmological Plebanski theory

    Full text link
    We consider the cosmological symmetry reduction of the Plebanski action as a toy-model to explore, in this simple framework, some issues related to loop quantum gravity and spin-foam models. We make the classical analysis of the model and perform both path integral and canonical quantizations. As for the full theory, the reduced model admits two types of classical solutions: topological and gravitational ones. The quantization mixes these two solutions, which prevents the model to be equivalent to standard quantum cosmology. Furthermore, the topological solution dominates at the classical limit. We also study the effect of an Immirzi parameter in the model.Comment: 20 page
    corecore