3,667 research outputs found

    Input-output relations for multiport ring cavities

    Get PDF
    Quantum input-output relations for a generic nn-port ring cavity are obtained by modeling the ring as a cascade of nn interlinked beam splitters. Cavity response to a beam impinging on one port is studied as a function of the beam-splitter reflectivities and the internal phase-shifts. Interferometric sensitivity and stability are analyzed as a function of the number of ports.Comment: 6 pages, 5 figures (low-res

    Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing

    Get PDF
    The current gravitational-wave localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the gravitational-wave observation. However, we can constrain the lensing galaxy's physical properties through both gravitational-wave and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application.Comment: 5 pages (main text) + 5 pages (methods+references), 5 figures. Accepted to MNRA

    The Superfluid Glass Phase of 3He-A

    Full text link
    It is established theoretically that an ordered state with continuous symmetry is inherently unstable to arbitrarily small amounts of disorder [1, 2]. This principle is of central importance in a wide variety of condensed systems including superconducting vortices [3, 4], Ising spin models [5] and their dynamics [6], and liquid crystals in porous media [7, 8], where some degree of disorder is ubiquitous, although its experimental observation has been elusive. Based on these ideas it was predicted [9] that 3He in high porosity aerogel would become a superfluid glass. We report here our nuclear magnetic resonance measurements on 3He in aerogel demonstrating destruction of long range orientational order of the intrinsic superfluid orbital angular momentum, confirming the existence of a superfluid glass. In contrast, 3He-A generated by warming from superfluid 3He-B has perfect long-range orientational order providing a mechanism for switching off this effect.Comment: 5 pages, 5 figures and supplementary informatio

    Quantum-state input-output relations for absorbing cavities

    Full text link
    The quantized electromagnetic field inside and outside an absorbing high-QQ cavity is studied, with special emphasis on the absorption losses in the coupling mirror and their influence on the outgoing field. Generalized operator input-output relations are derived, which are used to calculate the Wigner function of the outgoing field. To illustrate the theory, the preparation of the outgoing field in a Schr\"{o}dinger cat-like state is discussed.Comment: 12 pages, 5 eps figure

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    Anisotropic phases of superfluid 3He in compressed aerogel

    Full text link
    It has been shown that the relative stabilities of various superfluid states of 3He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on 3He imbibed within the aerogel. We identified A and B-phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results we infer that the B-phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A-phase
    corecore