51 research outputs found

    A time-domain control signal detection technique for OFDM

    Get PDF
    Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset

    Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation

    Get PDF
    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5–10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K+ that showed a stimulating effect, and Fe2+, Co2+ and Hg2+, which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation

    Model-Based Design Exploration of Wireless Sensor Node Lifetimes

    No full text

    Characterization of extremely halophilic Archaea isolated from saline environment in different parts of Turkey

    No full text
    Ninety-five extremely halophilic strains were isolated from six distinct saline regions of Turkey by using complex medium containing 25% NaCl. The selected regions are Tuz Golu (salt lake), Ankara; Aci Lake, Denizli; Salda Lake, Denizli; Seyfe Lake, Kyrsherhir; Tuzla Lake, Kayseri; and Bolluk Lake, Konya. The isolated strains were tested for motility, gram reaction, cell and colony morphologies, pigmentation, biochemical characteristics, and antibiotic sensitivities. According to membrane glycerol diether moieties and antibiotic susceptibilities, all isolated strains were found to belong to the domain Archaea. All isolates were examined for the presence of plasmids by agarose gel electrophoresis and it was established that most isolates contained plasmids that varied in number and whose molecular sizes ranged from 1 to 36.9 kbp. Whole-cell protein profiles from isolates were analyzed by SDS-PAGE and a similarity dendogram was constructed using the UPGMA method. Significant similarities and differences were observed among the isolates. The strains were clustered in eight groups and ten of our isolates were placed in the same group with the standard strains. The current study represents the first isolation and characterization of such a large collection of archeal strains from Turkey

    Prediction of Subgrade Resilient Modulus Using Genetic Algorithm and Curve-Shifting Methodology Alternative to Nonlinear Constitutive Models

    No full text
    This paper demonstrates the applicability of the genetic algorithm and curve shifting methodology to the estimation of the resilient modulus at various stress states for subgrade soils by using the results of triaxial resilient modulus tests This innovative methodology is proposed as an alternative to conventional nonlinear constitutive relationships With the genetic algorithm laboratory curves for different deviator stress levels at different confining pressures are horizontally shifted to form a final gamma distribution curve that can represent the stress strain behavior of subgrade soils with the corresponding predicted shift factors Resilient modulus values for a given stress state can be estimated on the basis of this curve and another gamma function that represents the variation of the shift values for different confining stresses To corn pare the effectiveness of these two approaches coefficients for the Uzan constitutive model were also determined for each laboratory test and compared with those determined by the approach described in this paper Predicted resilient modulus values from each approach are separately compared with artificial neural network (ANN) model predictions to evaluate their efficiency and reliability for resilient response prediction The results of the analysis indicated that the curve shifting methodology gave superior estimates and a coefficient of determination 14% higher than the Uzan model predictions when the results were evaluated with the ANN model outputs Thus although it is not a con stitutive model use of the genetic algorithm and curve shifting methodology is proposed as a promising technique for the evaluation of the stress strain dependency of subgrade soil
    corecore