7 research outputs found

    A New Model to Produce Infectious Hepatitis C Virus without the Replication Requirement

    Get PDF
    Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes

    A Novel Small Molecule Inhibitor of Hepatitis C Virus Entry

    Get PDF
    Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp) incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc), blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development

    Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    Get PDF
    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells

    Endocytosis of hepatitis C virus non-enveloped capsid-like particles induces MAPK-ERK1/2 signaling events

    No full text
    Although HCV is an enveloped virus, naked nucleocapsids have been reported in the serum of infected patients. The HCV core particle serves as a protective capsid shell for the viral genome and recombinant in vitro assembled HCV core particles induce strong specific immunity. We investigated the post-binding mechanism of recombinant core particle uptake and its intracellular fate. In hepatic cells, these particles are internalized, most likely in a clathrin-dependent pathway, reaching early to late endosomes and finally lysosomes. The endocytic acidic milieu is implicated in trafficking process. Using specific phosphoantibodies, signaling pathway inhibitors and chemical agents, ERK(1/2) was found to be activated in a sustained way after endocytosis, followed by downstream immediate early genes (c-fos and egr-1) modulation. We propose that the intriguing properties of cellular internalization of HCV non-enveloped particles can induce specific ERK(1/2)-MAPKs events that could be important in HCV life cycle and pathogenesis of HCV infection
    corecore