662 research outputs found
Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers
Saturation diving is an occupation that involves prolonged exposure to a confined, hyperoxic, hyperbaric environment. The unique and extreme environment is thought to result in disruption to physiological and metabolic homeostasis, which may impact human health and performance. Appropriate nutritional intake has the potential to alleviate and/or support many of these physiological and metabolic concerns, whilst enhancing health and performance in saturation divers. Therefore, the purpose of this review is to identify the physiological and practical challenges of saturation diving and consequently provide evidence-based nutritional recommendations for saturation divers to promote health and performance within this challenging environment. Saturation diving has a high-energy demand, with an energy intake of between 44 and 52 kcal/kg body mass per day recommended, dependent on intensity and duration of underwater activity. The macronutrient composition of dietary intake is in accordance with the current Institute of Medicine guidelines at 45-65 % and 20-35 % of total energy intake for carbohydrate and fat intake, respectively. A minimum daily protein intake of 1.3 g/kg body mass is recommended to facilitate body composition maintenance. Macronutrient intake between individuals should, however, be dictated by personal preference to support the attainment of an energy balance. A varied diet high in fruit and vegetables is highly recommended for the provision of sufficient micronutrients to support physiological processes, such as vitamin B12 and folate intake to facilitate red blood cell production. Antioxidants, such as vitamin C and E, are also recommended to reduce oxidised molecules, e.g. free radicals, whilst selenium and zinc intake may be beneficial to reinforce endogenous antioxidant reserves. In addition, tailored hydration and carbohydrate fueling strategies for underwater work are also advised
A dark siren measurement of the Hubble constant with the LIGO/Virgo gravitational wave event GW190412 and DESI galaxies
We present a measurement of the Hubble Constant using the gravitational
wave event GW190412, an asymmetric binary black hole merger detected by
LIGO/Virgo, as a dark standard siren. This event does not have an
electromagnetic counterpart, so we use the statistical standard siren method
and marginalize over potential host galaxies from the Dark Energy Spectroscopic
Instrument (DESI) survey. GW190412 is well-localized to 12 deg (90%
credible interval), so it is promising for a dark siren analysis. The dark
siren value for km/s/Mpc, with a posterior shape
that is consistent with redshift overdensities. When combined with the bright
standard siren measurement from GW170817 we recover
km/s/Mpc, consistent with both early and late-time Universe measurements of
. This work represents the first standard siren analysis performed with
DESI data, and includes the most complete spectroscopic sample used in a dark
siren analysis to date.Comment: Submitted to RNAA
Spectroscopic search for optical emission lines from dark matter decay
We search for narrow-line optical emission from dark matter decay by stacking dark-sky spectra from the Dark Energy Spectroscopic Instrument (DESI) at the redshift of nearby galaxies from DESI's Bright Galaxy and Luminous Red Galaxy samples. Our search uses regions separated by 5 to 20 arcsec from the centers of the galaxies, corresponding to an impact parameter of approximately 50 kpc. No unidentified spectral line shows up in the search, and we place a line flux limit of 10-19 ergs/s/cm2/arcsec2 on emissions in the wavelength range of 2000-9000A∘. This places the tightest constraints yet on the two-photon decay of dark matter in the mass range of 5 to 12 eV, with a particle lifetime exceeding 3×1025 s. This detection limit also implies that the line surface brightness contributed from all dark matter along the line of sight is at least 2 orders of magnitude lower than the measured extragalactic background light (EBL), ruling out the possibility that narrow optical-line emission from dark matter decay is a major source of the EBL
Recommended from our members
The rate of extreme coronal line emitting galaxies in the Sloan Digital Sky Survey and their relation to tidal disruption events
High-ionization iron coronal lines (CLs) are a rare phenomenon observed in galaxy and quasi-stellar object spectra that are thought to be created by high-energy emission from active galactic nuclei and certain types of transients. In cases known as extreme coronal line emitting galaxies (ECLEs), these CLs are strong and fade away on a time-scale of years. The most likely progenitors of these variable CLs are tidal disruption events (TDEs), which produce sufficient high-energy emission to create and sustain the CLs over these time-scales. To test the possible connection between ECLEs and TDEs, we present the most complete variable ECLE rate calculation to date and compare the results to TDE rates from the literature. To achieve this, we search for ECLEs in the Sloan Digital Sky Survey (SDSS). We detect sufficiently strong CLs in 16 galaxies, more than doubling the number previously found in SDSS. Using follow-up spectra from the Dark Energy Spectroscopic Instrument and Gemini Multi-Object Spectrograph, Wide-field Infrared Survey Explorer mid-infrared observations, and Liverpool Telescope optical photometry, we find that none of the nine new ECLEs evolve in a manner consistent with that of the five previously discovered variable ECLEs. Using this sample of five variable ECLEs, we calculate the galaxy-normalized rate of variable ECLEs in SDSS to be (equeation presented). Our rates are one to two orders of magnitude lower than TDE rates from the literature, which suggests that only 10-40 per cent of all TDEs produce variable ECLEs. Additional uncertainties in the rates arising from the structure of the interstellar medium have yet to be included
STag II: Classification of Serendipitous Supernovae Observed by Galaxy Redshift Surveys
With the number of supernovae observed expected to drastically increase
thanks to large-scale surveys like the Dark Energy Spectroscopic Instrument
(DESI), it is necessary that the tools we use to classify these objects keep up
with this increase. We previously created Supernova Tagging and Classification
(STag) to address this problem by employing machine learning techniques
alongside logistic regression in order to assign 'tags' to spectra based on
spectral features. STag II is a continuation of this work, which now makes use
of model supernova spectra combined with real DESI spectra in order to train
STag to better deal with realistic data. We also make use of the rlap score as
a trustworthiness cut, making for a more robust and accurate supernova
classifier than before.Comment: 27 pages, 7 figures. The STag code is available at
https://github.com/wdavison909/STa
The frequency of metal enrichment of cool helium-atmosphere white dwarfs using the DESI early data release
There is an overwhelming evidence that white dwarfs host planetary systems; revealed by the presence, disruption, and accretion of planetary bodies. A lower limit on the frequency of white dwarfs that host planetary material has been estimated to be ≃ 25–50 per cent; inferred from the ongoing or recent accretion of metals on to both hydrogen-atmosphere and warm helium-atmosphere white dwarfs. Now with the unbiased sample of white dwarfs observed by the Dark Energy Spectroscopic Instrument (DESI) survey in their Early Data Release (EDR), we have determined the frequency of metal enrichment around cool-helium atmosphere white dwarfs as 21 ± 3 per cent using a sample of 234 systems. This value is in good agreement with values determined from previous studies. With the current samples we cannot distinguish whether the frequency of planetary accretion varies with system age or host-star mass, but the DESI data release 1 will contain roughly an order of magnitude more white dwarfs than DESI EDR and will allow these parameters to be investigated
Recommended from our members
Catalog-level blinding on the bispectrum for DESI-like galaxy surveys
We evaluate the performance of the catalog-level blind analysis technique (blinding) presented in Brieden et al. (2020) in the context of a fixed template power spectrum and bispectrum analysis. This blinding scheme, which is tailored for galaxy redshift surveys similar to the Dark Energy Spectroscopic Instrument (DESI), has two components: the so-called “AP blinding” (concerning the dilation parameters α ∥, α ⊥) and “RSD blinding” (redshift space distortions, affecting the growth rate parameter f). Through extensive testing, including checks for the RSD part in cubic boxes, the impact of AP blinding on mocks with realistic survey sky coverage, and the implementation of a full AP+RSD blinding pipeline, our analysis demonstrates the effectiveness of the technique in preserving the integrity of cosmological parameter estimation when the analysis includes the bispectrum statistic. We emphasize the critical role of sophisticated — and difficult to accidentally unblind — blinding methods in precision cosmology
Synthetic light-cone catalogues of modern redshift and weak lensing surveys waith abacussummit
The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations (and Npart = 69123) as well as for the two huge simulations (and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy-shear, and shear-shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section)
Redshift-dependent RSD bias from intrinsic alignment with DESI Year 1 spectra
We estimate the redshift-dependent, anisotropic clustering signal in the Dark Energy Spectroscopic Instrument (DESI) Year 1 Survey created by tidal alignments of Luminous Red Galaxies (LRGs) and a selection-induced galaxy orientation bias. To this end, we measured the correlation between LRG shapes and the tidal field with DESI’s Year 1 redshifts, as traced by LRGs and Emission-Line Galaxies. We also estimate the galaxy orientation bias of LRGs caused by DESI’s aperture-based selection, and find it to increase by a factor of seven between redshifts 0.4−1.1 due to redder, fainter galaxies falling closer to DESI’s imaging selection cuts. These effects combine to dampen measurements of the quadrupole of the correlation function (ξ2) caused by structure growth on scales of 10–80 h−1 Mpc by about 0.15 per cent for low redshifts (0.4 < z < 0.6) and 0.8 per cent for high (0.8 < z < 1.1), a significant fraction of DESI’s error budget. We provide estimates of the ξ2 signal created by intrinsic alignments that can be used to correct this effect, which is necessary to meet DESI’s forecasted precision on measuring the growth rate of structure. While imaging quality varies across DESI’s footprint, we find no significant difference in this effect between imaging regions in the Legacy Imaging Survey
- …
