27 research outputs found

    The Sudden Dominance of blaCTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam

    Get PDF
    Shigellosis is a disease caused by bacteria belonging to Shigella spp. and is a leading cause of bacterial gastrointestinal infections in infants in unindustrialized countries. The Shigellae are dynamic and capable of rapid change when placed under selective pressure in a human population. Extended spectrum beta lactamases (ESBLs) are enzymes capable of degrading cephalosporins (a group of antimicrobial agents) and the genes that encode them are common in pathogenic E. coli and other related organisms in industrialized countries. In southern Vietnam, we have isolated multiple cephalosporin-resistant Shigella that express ESBLs. Furthermore, over two years these strains have replaced strains isolated from patients with shigellosis that cannot express ESBLs. Our work describes the genes responsible for this characteristic and we investigate one of the elements carrying one of these genes. These finding have implications for treatment of shigellosis and support the growing necessity for vaccine development. Our findings also may be pertinent for other countries undergoing a similar economic transition to Vietnam's and the corresponding effect on bacterial populations

    Discrimination of SHV β-Lactamase Genes by Restriction Site Insertion-PCR

    No full text
    Restriction site insertion-PCR (RSI-PCR) is a simple, rapid technique for detection of point mutations. This technique exploits primers with one to three base mismatches near the 3′ end to modulate a restriction site. We have developed this technique to identify described mutations of the bla(SHV) genes for differentiation of SHV variants that cannot be distinguished easily by other techniques. To validate this method, eight standard strains were used, each producing a different SHV β-lactamase: SHV-1, SHV-2, SHV-3, SHV-4, SHV-5, SHV-6, SHV-8, and SHV-18. Mismatch primers were designed to detect mutations affecting amino acids at positions 8 (SspI), 179 (HinfI), 205 (PstI), 238 (Gly→Ala) (BsrI), and 240 (NruI) of bla(SHV) genes. All amplimers of the bla(SHV) genes used in this study yielded the predicted restriction endonuclease digestion products. In addition, this study also makes theoretical identification of bla(SHV-6), bla(SHV-8), and 12 novel bla(SHV) variants using the PCR-restriction fragment length polymorphism (RFLP) technique possible. By using a combination of PCR-RFLP and RSI-PCR techniques, up to 27 SHV variants can now be distinguished rapidly and reliably. These simple techniques are readily applied to epidemiological studies of the SHV β-lactamases and may be extended to the characterisation of other resistance determinants

    Characterization of the extended-spectrum β-lactamases and determination of the virulence factors of uropathogenic Escherichia coli strains isolated from children

    Get PDF
    BACKGROUND AND AIM: The aim of the study was to characterize ESBL-producing uropathogenic Escherichia coli (UPEC) strains isolated in children. That included the investigation of virulence factors and the analysis of the types of β-lactamases at the molecular genetic level. ----- MATERIAL AND METHODS: During the 2-year study period, 77 ESBL-producing E. coli strains were recovered from urine samples of febrile children with significant bacteriuria hospitalized at one Croatian hospital. Susceptibility of isolates to bactericidal serum activity was tested by Shiller and Hatch method, while adhesin expression was determined by agglutination methods. Characterization of ESBLs was performed by PCR with specific primers for ESBLs and by sequencing of bla (ESBL) genes. Genotyping of the E. coli isolates was performed by pulsed-field gel electrophoresis (PFGE). ----- RESULTS: Twenty-seven (35.1 %) and 50 (64.9 %) ESBL-producing UPEC strains were isolated in neonates and infants, respectively. Of 70 strains investigated for the presence of virulence factors, adhesins were detected in 48.6 % strains (8.6 % in the neonate and 40 % in the infants group) giving a statistically significant difference in adhesin expression between the two groups (p < 0.01). Hemolysin was produced by 84.3 %, whereas 70 % of strains were serum-resistant. The bla (TEM) gene was detected in 22 (28 %) and bla (SHV) gene in 57 strains (74 %), whereas bla (CTX-M) gene was detected in only two isolates (2.5%). In ten isolates, bla (TEM) and bla (SHV) were simultaneously detected. Sequencing of bla (SHV) genes revealed that SHV-5 β-lactamase was by far the most prevalent and was found in 51 strains (66 %). The strains were clonally related as demonstrated by PFGE and assigned into ten clusters. ----- CONCLUSIONS: Infection control measures should be employed and the consumption of expanded-spectrum cephalosporins in the hospital should be restricted

    Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17.

    No full text
    Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR
    corecore