638 research outputs found

    International Students' Perception and Use of the Library at North Carolina State University

    Get PDF
    International students are an ever growing population on university campuses, as these numbers continue to increase each year, it is important that academic libraries continue to study the evolving problems and needs international students face. Having a better understanding of the difficulties and problems international students face in U.S. academic libraries will provide a framework for academic librarians, outreach programs, and campus international organizations to develop solutions to these problems. This study hopes to identify perceptions and uses of the library by international students and discover strategies to better meet their needs while attending an American university

    Complex Physical Activities, Outdoor Play, and School Readiness among Preschoolers

    Get PDF
    High quality educational settings play a crucial role in preparing a child to enter kindergarten, but little work has explored how outdoor play and complex physical activity outside school and childcare settings promote school readiness among preschoolers. To address this gap, the present study explored connections among school readiness with outdoor play and participation in complex physical activity. Parents (N = 107) reported the extent and frequency of time their child spent in outdoor play during a typical week, and what complex activities (e.g., soccer, biking, basketball) the child played over the last year. School readiness was assessed with parent reports on the Preschool Behavior and Emotional Rating Scale. Results showed participating in complex activities significantly moderated the relationship between time in outdoor play with school readiness, with time in outdoor play positively related to school readiness for children who participated in two or less complex activities. For children who participated in three complex activities, time in outdoor play was not related to school readiness. Findings offer support that encouraging both outdoor play and participation in complex physical activities could promote school readiness, particularly when opportunities for outdoor playtime are limited

    Discovery of a binary icosahedral quasicrystal in Sc12_12Zn88_88

    Full text link
    We report the discovery of a new binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain, quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order, or phason strain. The discovery of i-Sc12_12Zn88_88 suggests that a reexamination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other, new binary quasicrystalline phases.Comment: Incorrect spelling in author list resolve

    Tetra­kis(N,N-diethyl­carbamato)titanium(IV)

    Get PDF
    The mononuclear title compound, [Ti(C5H10NO2)4], is a rare example of an eight-coordinate TiIV compound in which all donor atoms are O atoms. The coordination geometry around TiIV is pseudo-dodeca­hedral and the O—C—O angles of the carbamate ligands are slightly compressed [range 115.3 (2)–116.7 (2)°], apparently on account of the high coordination number. One ethyl group is disordered over two positions; the site occupancy factors are 0.64 and 0.36

    Di-μ-chlorido-bis­[dichlorido(N,N-diethyl­acetamidinato)(N,N-diethyl­acetamidine)titanium(IV)] acetonitrile disolvate

    Get PDF
    In the centrosymmetric title compound [Ti2Cl6(C6H13N2)2(C6H14N2)2]·2C2H3N, an inversion center relates the two Ti atoms which display a distorted octa­hedral coordination geometry. There are two uncoordinated acetonitrile solvent mol­ecules per mol­ecule of title compound in the crystal structure

    Expression and localization of estrogen receptor-alpha protein in normal and abnormal term placentae and stimulation of trophoblast differentiation by estradiol

    Get PDF
    Estrogens play an important role in the regulation of placental function, and 17-beta-estradiol (E2) production rises eighty fold during human pregnancy. Although term placenta has been found to specifically bind estrogens, cellular localization of estrogen receptor alpha (ER-alpha) in trophoblast remains unclear. We used western blot analysis and immunohistochemistry with h-151 and ID5 monoclonal antibodies to determine the expression and cellular localization of ER-alpha protein in human placentae and cultured trophoblast cells. Western blot analysis revealed a ~65 kDa ER-alpha band in MCF-7 breast carcinoma cells (positive control). A similar band was detected in five normal term placentae exhibiting strong expression of Thy-1 differentiation protein in the villous core. However, five other term placentae, which exhibited low or no Thy-1 expression (abnormal placentae), exhibited virtually no ER-alpha expression. In normal placentae, nuclear ER-alpha expression was confined to villous cytotrophoblast cells (CT), but syncytiotrophoblast (ST) and extravillous trophoblast cells were unstained. In abnormal placentae no CT expressing ER-alpha were detected. Normal and abnormal placentae also showed ER-alpha expression in villous vascular pericytes and amniotic (but not villous) fibroblasts; no staining was detected in amniotic epithelial cells or decidual cells. All cultured trophoblast cells derived from the same normal and abnormal placentae showed distinct ER-alpha expression in western blots, and the ER-alpha expression was confined to the differentiating CT, but not to the mature ST. Trophoblast cells from six additional placentae were cultured in normal medium with phenol red (a weak estrogen) as above (PhR+), or plated in phenol red-free medium (PhR-) without or with mid-pregnancy levels of E2 (20 nM). Culture in PhR- medium without E2 caused retardation of syncytium formation and PhR-medium with E2 caused acceleration of syncytium formation compared to cultures in PhR+ medium. These data indicate that the considerable increase in estrogen production during pregnancy may play a role, via the ER-alpha, in the stimulation of CT differentiation and promote function in normal placentae. This mechanism, however, may not operate in abnormal placentae, which show a lack of ER-alpha expression

    Unmasking silent neurotoxicity following developmental exposure to environmental toxicants

    Get PDF
    AbstractSilent neurotoxicity, a term introduced approximately 25years ago, is defined as a persistent change to the nervous system that does not manifest as overt evidence of toxicity (i.e. it remains clinically unapparent) unless unmasked by experimental or natural processes. Silent neurotoxicants can be challenging for risk assessors, as the multifactorial experiments needed to reveal their effects are seldom conducted, and they are not addressed by current study design guidelines. This topic was the focus of a symposium addressing the interpretation and use of silent neurotoxicity data in human health risk assessments of environmental toxicants at the annual meeting of the Developmental Neurotoxicology Society (previously the Neurobehavioral Teratology Society) on June 30th, 2014. Several factors important to the design and interpretation of studies assessing the potential for silent neurotoxicity were discussed by the panelists and audience members. Silent neurotoxicity was demonstrated to be highly specific to the characteristics of the animals being examined, the unmasking agent tested, and the behavioral endpoint(s) evaluated. Overall, the experimental examples presented highlighted a need to consider common adverse outcomes and common biological targets for chemical and non-chemical stressors, particularly when the exposure and stressors are known to co-occur. Risk assessors could improve the evaluation of silent neurotoxicants in assessments through specific steps from researchers, including experiments to reveal the molecular targets and mechanisms that may result in specific types of silent neurotoxicity, and experiments with complex challenges reminiscent of the human situation

    A proposal for water oxidation in photosystem II

    Full text link

    Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells

    Get PDF
    BACKGROUND: Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. RESULTS: Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. CONCLUSIONS: These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases)
    corecore