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Variability of Placental Expression of Cyclin E Low Molecular Weight Variants1

Antonin Bukovsky,2 Maria Cekanova, Michael R. Caudle, Jay Wimalasena, James S. Foster,
Jeffrey A. Keenan, and Robert F. Elder

Laboratory for Development, Differentiation, and Cancer, Department of Obstetrics and Gynecology,
The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920

ABSTRACT

Cyclin E, a G1 cyclin serving to activate cyclin-dependent ki-
nase 2, is the only cyclin gene for which alternative splicing
leading to structurally different proteins has been described.
Different cyclin E proteins are present in tumor tissues but ab-
sent from normal (steady) tissues. Cyclin E contributes to the
regulation of cell proliferation and ongoing differentiation and
aging. Because trophoblast has invasive properties and differ-
entiates into syncytium and placental aging may develop at
term, we examined cyclin E protein variants in human placenta.
Placental samples were collected from 27 deliveries between 33
and 41 wk and were compared with ovarian cancer (positive
control). Both placental and tumor tissues showed seven cyclin
E low molecular weight (LMW) bands migrating between 50 and
36 kDa. Placental expression of cyclin E showed certain vari-
ability among cases. Lowest cyclin E expression was detected in
normal placentas (strong expression of Thy-1 differentiation pro-
tein in villous core and low dilatation of villous blood sinusoids).
Abnormal placentas (significant depletion of Thy-1 and more or
less pronounced dilatation of sinusoids) showed significant in-
crease either of all (early stages of placental aging) or only cer-
tain cyclin E proteins (advanced aging). Our studies indicate that
a similar spectrum of cyclin E protein variants is expressed in
the placental and tumor tissues. Low cyclin E expression in nor-
mal placentas suggests a steady state. Overexpression of all cy-
clin E proteins may indicate an activation of cellular prolifera-
tion and differentiation to compensate for developing placental
insufficiency. However, an enhanced expression of some cyclin
E LMW proteins only might reflect an association of cyclin E
isoforms with placental aging or an inefficient placental adap-
tation.

developmental biology, placenta, pregnancy, trophoblast

INTRODUCTION

Placenta is required for mammalian reproduction. Dur-
ing early human pregnancy, there is a rapid proliferation of
cytotrophoblast, resulting in the invasion of decidua, re-
placement of endothelial cells in uterine spiral arteries ac-
companying vascular dilatation, and terminal differentiation
into the thin layer of syncytium at the villous surface [1].
Hence, the proliferating trophoblast exhibits invasive prop-
erties required for the implantation and for an adequate ma-
ternal blood supply to the intervillous space. The thin layer
of terminally differentiated syncytium enables exchange of
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nutrients and metabolites between the maternal and fetal
blood.

Proliferation of eukaryotic cells is promoted by cyclin
proteins, in association with cyclin-dependent kinases
(cdk). Cyclin E, one of the G1 cyclins, is expressed during
mid- to late-G1 phase. Kinase activities of cyclin E/cdk2
complexes are at maximum levels before S-phase entry.
Functional knockout of cyclin E by injection of anticyclin
E antibodies into fibroblast cells causes cell arrest in the G1
phase. Conversely, the overexpression of cyclin E protein
causes acceleration of progression through G1. In addition
to its important role in cell cycle progression, cyclin E also
plays a key role in cellular differentiation and senescence
(reviewed in [2]). Several studies with various differentia-
tion systems have indicated postproliferative retention of
significant levels of cyclins or cyclin E upregulation during
cellular differentiation and aging [3–7].

The cyclin E gene produces a spectrum of alternatively
spliced RNAs resulting in low molecular weight (LMW)
cyclin E isoforms [8–10]. Cyclin E is the only cyclin gene
for which alternative splicing leading to structurally differ-
ent proteins has been described. When compared with the
cyclin E protein originally described (cyclin E:E), a shorter
splice variant (cyclin E:S) has been identified, which differs
from cyclin E:E by a 49 amino acid deletion in the cyclin
box. This shorter cyclin E:S isoform is defective in cdk2
binding, indicating that cdk2 binding is dependent on a
functional cyclin box in cyclin E [8]. Other cyclin E vari-
ants are 15 amino acids longer (cyclin E:L) [10] or 45 ami-
no acids shorter (cyclin E:T) isoforms [11].

The cyclin E:T has a molecular weight similar to cyclin
E:S [11], and therefore they are seen in Western blots as a
single (cyclin E:T/S) band. Although cyclin E:T contains
an intact cyclin box, it is unable to function as a G1 cyclin
in yeast, pointing to a crucial functional role for sequences
outside the cyclin box. However, during the cell cycle, cy-
clin E:T expression precedes up-regulation of the other iso-
forms and dramatically decreases in terminally differenti-
ated cells. These observations suggest that cyclin E:T (and
cyclin E:S) serve different functions when compared with
the cyclin E isoforms stimulating progression of the cell
cycle [11].

Additional splice variants of cyclin E have been identi-
fied to date. They include a 9-base pair (bp) in-frame de-
letion in the 59 domain of the message termed D9, a 148-
bp deletion causing a C-terminal frameshift found in the 39
domain of the cyclin E mRNA termed D148, a 48-bp de-
letion from position 22 to 69 called D48, a 97-bp deletion
from position 24 to 120 called D97, and an IN3 unspliced
variant [12]. However, D97 and IN3 mRNA splice variants
cannot be translated into proteins [12], leaving the identi-
fied cyclin E protein variants as cyclin E:L, cyclin E:E,
cyclin E:T, cyclin E:S, D9, D48, and D148. The molecular
weight of cyclin E proteins produced by D9, D48, and D148
mRNA splice variants remains, however, unknown.
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Most LMW cyclin E protein variants (except cyclin E:
S) contain an intact cyclin box, bind to cdk2, and promote
G1-S transition (except cyclin E:T). The cyclin E:L variant
is the predominantly expressed cyclin E protein isoform.
This suggests that cyclin E:L is the major product of the
cyclin E gene and cyclin E:E (originally considered to be
a wild type) belongs to LMW variants with lower frequency
of expression. The LMW cyclin E protein isoforms repre-
sent N-terminal truncations because the monoclonal anti-
body HE12, used to detect them on a Western blot, is di-
rected toward a C-terminal epitope (residues 318–338)
(data and review in [12]).

In human placental villi, cyclin E protein expression was
found by immunohistochemistry in a higher percentage of
cells than those that are actively dividing, including syn-
cytiotrophoblast, and results of the Western blot analysis
revealed that two forms of cyclin E protein were present
[13]. In contrast, Bamberger et al. [14] recently reported
that cyclin E expression is limited to dividing (Ki671) vil-
lous cytotrophoblast and some cells in the mesenchymal
villous core.

In an earlier study, we have found that expression of
cyclin E in cryostat sections of a placental cotyledon was
greatest overall within intravillous blood vessels and cyto-
trophoblast. However, cyclin E immunoreactivity was sig-
nificantly reduced within large areas of syncytium [15]. We
also reported that primary cytotrophoblast cultures from
normal term pregnancies show high cyclin E expression at
24 h and that cyclin E protein forms complexes with cdk2.
Subsequently, the expression of cyclin E alone decreased
and cdk2-associated cyclin E was zero at 96 h of culture
exhibiting syncytium formation. Accordingly, cyclin E
gene expression was high at 24 h and diminished thereafter
[15].

In this study, we used Western blot analysis to identify
expression of cyclin E LMW protein variants in placental
samples and compared it to the malignant tissue. We also
quantified cyclin E expression and correlated the data with
the development of placental senescence. Numerous studies
have shown that after 34–36 wk of human gestation, even
in otherwise uncomplicated pregnancies, the placenta may
show advanced aging accompanied by villous degeneration
while the fetus continues development [16–21]. In general,
villous degeneration is characterized by fibrin deposits at
the villous surface, marked interstitial fibrosis and fibrinoid
degeneration of the stroma, and is associated with cellular
apoptosis and congestion of villous sinusoids [17, 22–24].
Placental senescence affects some placentas during the third
trimester, yet even the aging placenta may have a capacity
to compensate for needs of the growing fetus [21]. Dila-
tation of villous sinusoids, with accompanying thinning of
the villous membrane, is the principal adaptation to fetal
hypoxia [25]. Immunohistochemically, aging and degener-
ation of terminal villi are associated with progressive dim-
inution of Thy-1 differentiation protein expression in vil-
lous core [26].

MATERIALS AND METHODS

Tissues
Twenty-seven placentas from deliveries between 33 and 41 wk of preg-

nancy were investigated. The source of placental tissue was women with
normal and abnormal pregnancies admitted to the University of Tennessee
Medical Center. As the only University/teaching hospital in the area, we
have a significant proportion of obstetric patients with abnormal pregnan-
cies. Excluded were patients with blood transferable infections, e.g., hep-
atitis and HIV. Samples of ovarian cancer (positive control for cyclin E

expression) were obtained from NCI Cooperative Human Tissue Network,
Columbus, OH. Samples of normal ovaries (control for cyclin E expres-
sion in normal tissue) were obtained from hysterectomy specimens in co-
operation with our Department of Pathology. The study was approved by
the Institutional Review Board.

Tissue Processing and Peroxidase Immunohistochemistry
The processing of the placenta started within 30–60 min after delivery.

Several 10- 3 10- 3 5-mm blocks of tissue were collected, frozen, and
7-mm cryostat sections incubated with monoclonal mouse anti-human
Thy-1 antibody (1:100), clone F15-42-01 [27] (Dr. Rosemarie Dalchau of
the Institute of Child Health, University of London, London, England),
followed by Universal DAKO LSAB2 Peroxidase Kit (DAKO Corpora-
tion, Carpinteria, CA), as described previously [26].

For preparation of protein lysates from whole placenta, ovarian cancer,
and normal ovaries, 300 adjacent tissue sections were collected into two
microcentrifuge tubes and stored at 2808C. At least two distinct samples
were processed from each case for immunohistochemistry and Western
blotting.

Western Blotting
Tissue sections in microcentrifuge tubes were lysed by adding ice-cold

lysis buffer (20 mM Tris pH 7.5, 200 mM NaCl, 0.25% Nonidet P-40;
400 ml/100 mg) containing 1 mM sodium orthovanadate, 10 mM sodium
fluoride, and 1 mM phenylmethylsulfonyl fluoride. After 15 min on ice,
the lysates were sonicated by Sonicator Cell Disruptor (Heat Systems-
Ultrasonic, Inc., Plainview, NY) for 5 sec and centrifuged at 11 000 3 g
for 10 min at 48C. Supernatants were stored at 2808C.

Protein concentrations were determined by Bradford assay (Bio-Rad,
Hercules, CA). Equal amounts of protein (21 mg) were loaded onto re-
ducing 10% SDS-Tris-glycine polyacrylamide gels, transferred to nitro-
cellulose (Bio-Rad), and processed as described previously [15]. One of
two identical membranes was first subjected to control staining (secondary
antibody only), developed, washed, and stained for actin (0.25 mg/ml in
blocking reagent, clone C4; Boehringer Mannheim Corp., Indianapolis,
IN). The second membrane was stained for cyclin E (0.1 mg/ml in blocking
reagent, clone HE12; Santa Cruz Biotechnology, Santa Cruz, CA).

Quantitative Analysis of Placental Villi
Placental villi were evaluated by 1) measurement of the density of Thy-1

expression in villous core, which diminishes with villous aging [26], and
2) measurement of dilatation of villous blood capillaries, which reflects an
effort of the placenta to compensate the development of chronic fetal hyp-
oxia [25, 28].

First, the video images of Thy-1 staining (original magnification 3200
1 camera factor 1.5) were captured from microscope via the RGB video
camera into the Scion Image software (Scion Corporation, Frederick, MD).
To determine the density of Thy-1 expression in villous core, we first
measured raw optical density (OD) in the constant area (250 mm2) in
randomly selected terminal villi (120 measurements for each placental
type—see Results for placental typing). To obtain net OD, each raw mea-
surement was subtracted with the density of tissue background in the con-
trol staining. The net OD values were used for statistical calculations.

To evaluate the extent of dilatation of villous sinusoids, we used a
freehand tool to delineate manually the margins of the blood vessels and
then determined 1) the area in square micrometers and 2) the maximum
axis, in micrometers, in 120 randomly selected sinusoids per placental
type.

Quantitative Analysis of Cyclin E Expression
Blots were scanned into the Paint Shop Pro Version 5 software (JASC

Software, Inc., Minneapolis, MN), saved in Windows Bitmap, and loaded
into the Scion Image (Scion Corporation). Individual bands were manually
selected using the freehand tool, and mean raw optical density and band
area were measured. The raw optical density was subtracted with back-
ground value for the specific lane and net OD multiplied by the area to
obtain the integrated density. Calculations were performed using Microsoft
Excel 2002 (Microsoft Corporation). Sets of integrated densities for par-
ticular placental type were used for statistical calculations.

Statistical Analysis of Data
Statistical analysis of data was performed using the GraphPad InStat

version 3.01 for Windows software (GraphPad Software, San Diego, CA).
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FIG. 1. Variability of cyclin E (cE) expression in placental samples and
a comparison with ovarian cancer (OvCa; papillary cystadenocarcinoma,
female 56 yr of age) and normal ovary (nOv; female 26 yr). Cryostat
sections were lysed and extracts clarified by centrifugation. Equal
amounts of protein (21 mg) were separated by SDS-PAGE and immuno-
blotted with HE12 antibody to cyclin E (lanes 1–4, 6, and 7). Lane 5 (ctr)
shows background staining with secondary antibody alone. Arrowheads
(see text for the letters) indicate cyclin E protein variants. Rows at the
bottom indicate case numbers (#) and placental types (PT; explained in
the text to Fig. 2).

For evaluation of Thy-1 density, the net optical density values were sub-
jected to one-way analysis of variance (ANOVA) followed by the Tukey-
Kramer multiple comparisons test. The relationship of placental types to
maternal age was evaluated in the same way. Maximum axis and area of
sinusoids were evaluated by Kruskal-Wallis test (nonparametric ANOVA)
followed by Dunn multiple comparisons test. For Western blots, the values
of integrated density were transformed (Y 5 log[Y]) and evaluated by one-
way ANOVA, followed by Dunnett multiple comparisons test. The values
of P , 0.05 were considered significant.

RESULTS

Comparison of Placental and Tumor Samples

We investigated cyclin E expression in placental samples
and compared it with the ovarian carcinoma. Figure 1
shows that placental samples and ovarian carcinoma show
seven distinct LMW protein variants, which migrate be-
tween 50 and 36 kDa. Cyclin E:L (L; 50 kDa) was strongly
expressed in placental samples (lanes 1–4) and ovarian can-
cer (OvCa; lane 6). However, expression of cyclin E:E (cE;
45 kDa) was higher in ovarian cancer when compared with
placental tissues. In placental samples, the cyclin E:T/S (T/
S; 43 kDa) was highest in lane 2 and lowest in lane 1. The
sample in lane 1 also showed the lowest and that in lane 2
the highest expression of the other four placental cyclin E
LMW proteins, named cyclin E:U (U; ;39 kDa), cyclin E:
V (V; ;38 kDa), cyclin E:X (X; ;37 kDa), and cyclin E:
Y (Y; ;36 kDa). Expression of cyclin E:V in lanes 2 and
4 was even higher than that in ovarian cancer. Note low
cyclin E expression in normal ovary (nOv, lane 7).

Placental samples, ovarian carcinoma, and normal ovary
also showed several high molecular weight bands, which

were not detected in control staining (lane 5), possibly co-
valent complexes (c) of cyclin E with functionally related
proteins. Two of them were shared among all samples, a
weaker band at ;100 kDa (named cE:c100), and a stronger
band at ;80 kDa (named cE:c80). Ovarian cancer also
showed a distinct band at ;70 kDa (cE:c70).

Relationship of Cyclin E Expression to the Development
of Placental Senescence

Variability of cyclin E expression among placentas
raised a question of whether it is not somehow related to
the development of placental senescence. We investigated
two parameters: 1) expression of Thy-1 differentiation pro-
tein in villous core (high in normal mature terminal villi)
and 2) extent of dilatation of villous blood sinusoids (low
in normal mature terminal villi) [26]. Evaluation of these
two parameters allowed the distinction of four placental
types. Normal mature placentas (placental type 1; Fig. 2,
a–c) showed strong Thy-1 in the core of terminal villi (net
OD 68.5 6 0.7 SEM) and small lumen of blood sinusoids
(15.4 6 0.4 mm in diameter and area 121.7 6 4.7 mm2).
Early development of placental senescence (placental type
2; Fig. 2, e and f) was characterized by significant dimi-
nution of Thy-1 staining (net OD 46.7 6 0.9; P , 0.001)
and moderate but significant (P , 0.001) dilatation of vil-
lous sinusoids (diameter 20.7 6 0.6 mm and area 225.9 6
12.4 mm2). Placentas showing further diminution of Thy-1
expression (net OD 31.6 6 0.8; P , 0.001) and excessive
dilatation of villous sinusoids (diameter 33.2 6 1.0 mm and
area 556.3 6 31.7 mm2; P , 0.001) were classified as type
3 (Fig. 2, h and i). Finally, in placental type 4 (Fig. 2, k
and l), the Thy-1 expression in terminal villi was very low
(net OD 20.3 6 0.8), but this was not accompanied by
dilatation of villous sinusoids (diameter 15.4 6 0.5 mm and
area 135.5 6 8.5 mm2). Quantitative evaluation is sum-
marized in Figure 2, m–o. As anticipated, some placentas
showed a mixture of villous types, suggesting transition
between placental types 1 and 2 (Fig. 2d), types 2 and 3
(Fig. 2g), and types 3 and 4 (Fig. 2j). The right inset Figure
2g shows control staining.

Left inserts in Figure 2 show that low cyclin E expres-
sion accompanied normal placentas (a–c). Placental sample
showing a transition to type 2 exhibited an increase of cy-
clin E expression (insert in Fig. 2d), which also accompa-
nied genuine type 2 placentas (inserts in Fig. 2, e and f).
The open arrow in Figure 2d indicates particularly high
expression of cyclin E:T/S during type 1 to 2 transition,
and bilateral arrows indicate the characteristic increase of
other cyclin E LMW variants in placental type 2 (see also
PT2, Fig. 3).

Transition to placental types 3 and 4 and genuine types
3 and 4 showed higher expression of some cyclin E LMW
proteins when compared with type 1 (inserts in Fig. 2, g–l
vs. a–c) but lower expression when compared with type 2
placentas (inserts in Fig. 2, g–l vs. e and f). From the total
27 placentas, 7 were classified as type 1, 4 in transition to
type 2, 4 of genuine type 2, 2 in transition to type 3, 6 of
genuine type 3, 2 in transition to type 4, and 2 of genuine
type 4.

Type 1 placentas were found in younger women (mean
age 19.8 6 0.7 SEM) with either uncomplicated or com-
plicated pregnancies (hypertension, drug abuse with limited
prenatal care). Type 2 placentas were found in women with
mean age 25.3 6 1.5 with normal or abnormal pregnancies
(gestational diabetes, anemia, drug abuse, heart diseases).
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FIG. 2. A comparison of cyclin E expression with expression of Thy-1 differentiation protein (Thy-1) in villous core and dilatation of blood sinusoids.
Slides with cryostat sections were fixed in acetone and stained for Thy-1 as described in Materials and Methods. Low cyclin E expression (inserts) is
associated with type 1 placentas (1, a–c; note normal blood sinusoids and high Thy-1 expression in villous core). Transition to type 2 (1 . 2, d) and
genuine type 2 placentas (2, e and f; note moderate dilatation of sinusoids and diminution of Thy-1 staining) show a marked increase of cyclin E:T/S
in d (open arrow) and other cyclin E LMW variants (bilateral arrows). Transition to type 3 (2 . 3; g) and genuine type 3 placentas (3, h and i; note
extreme dilatation of sinusoids and low Thy-1 in villous core) show higher cyclin E expression when compared with type 1 placentas but lower when
compared with type 2. Transition to type 4 (j) and genuine type 4 placentas (4, k and l; note rare dilatation of sinusoids accompanied by weak or no
Thy-1 expression in villous core) also show higher cyclin E expression when compared with type 1 but lower when compared with type 2. m)
Quantitative evaluation of Thy1 staining (net optical density) in placental types (n 5 120 measurements for each column). One-way ANOVA P ,
0.0001; ***P , 0.001, Tukey-Kramer multiple comparisons test between adjacent columns or as indicated. n) Demonstrates maximum axis (in mm),
and o) area (in mm2) of blood sinusoids (n 5 120 measurements for each column). Nonparametric ANOVA, P , 0.0001; ***P , 0.001; n.s., not
significant, Dunn multiple comparisons test between adjacent columns, or as indicated; #, case number; right inset in g (ctr), control staining.
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FIG. 3. Quantitative evaluation of cyclin E protein expression in placen-
tal and ovarian carcinoma samples. Blots were scanned and individual
bands evaluated for integrated density (net optical density 3 area) and
statistically evaluated as indicated in Materials and Methods. Measure-
ments for placental type 1 (PT1), n 5 20; PT2, n 5 16; PT3, n 5 16; PT4,
n 5 8; ovarian carcinoma (OvCa), n 5 4. Normal placenta (NP), n 5
140, and abnormal placenta ([AN] PT2 1 PT3 1 PT4]), n 5 252 mea-
surements; OvCa, n 5 28, and normal ovary [nOv], n 5 42 values in h.
One-way ANOVA P , 0.0001 for transformed data (Y 5 log[Y]) in all
panels. *P , 0.05; **P , 0.01 vs. first column, Dunnett multiple com-
parisons test. Details in text.

Type 3 placentas were associated with mean maternal age
26.3 6 1.8 and abnormal pregnancies (diabetes mellitus on
insulin, heart diseases, hypothyroidism, or preeclampsia).
Placentas in transition to type 4 and genuine type 4 pla-
centas were associated with more advanced maternal age
(mean 36.0 6 2.8). This group of women showed signifi-
cantly higher maternal age (overall ANOVA: P 5 0.0014;
Tukey-Kramer multiple comparison test: P , 0.01 vs.
women with PT1, PT2, and PT3).

One of two placentas classified as genuine type 4 (case
13, age 41 yr, gestational diabetes on insulin, cesarean sec-
tion at 33 1 2 wk of pregnancy) was a small placenta (380
g), associated with intrauterine growth retardation (?1250
g, Apgars 4 1 7) and reduced amniotic fluid volume. This
placenta showed severe senescence, characterized by dom-
inance of aged villi. The placenta from the other case (case
21, maternal age 35 yr, type II diabetes on insulin, repeated
cesarean section at 3712 wk of pregnancy) was hypertro-
phic (820 g), associated with fetal macrosomia (?4900 g,
Apgars 8 1 9). The placenta showed transformation of im-
mature villi into the terminal villi persisting in an immature

state (low Thy-1 expression without fibrinoid degenera-
tion).

Quantitative Evaluation of Cyclin E Expression

For statistical purposes, the placentas in transition from
lower to the higher placental type were evaluated along
with those showing higher placental type. Figure 3, a–g,
shows quantitative evaluation of cyclin E LMW variants in
placental types (PT1–PT4) and their comparison with the
ovarian cancer (OvCa). When compared with normal pla-
centas (PT1), the type 2 placental samples (and ovarian
cancer) showed significantly higher expression of all cyclin
E LMW variants. Type 3 placentas showed significantly
higher expression of cyclin E:L, cyclin E:E, and cyclin E:
U. Type 4 placentas showed significantly higher expression
of cyclin E:T/S only.

To determine if placental abnormality is associated with
higher cyclin E expression in general, all measurements of
cyclin E LMW variants from abnormal placentas (types 2–
4) were coupled and compared with measurements from
placental type 1. Figure 3h shows that total cyclin E ex-
pression is significantly higher (P , 0.01) in abnormal pla-
centas (APs) when compared with normal placentas (NPs).
The total cyclin E expression in ovarian cancer was also
significantly higher when compared with NPs (P , 0.01)
but similar when compared with APs (P . 0.05). Total
cyclin E expression in normal ovaries (six samples inves-
tigated) was significantly lower when compared with NPs
(P , 0.01).

DISCUSSION

The determination of cyclin E LMW protein expression
in placental samples may represent a novel aspect in dis-
crimination between the placental physiology and pathol-
ogy. Yet the meaning of differences in expression of cyclin
E LMW variants among placental samples remains un-
known. We speculate that the lower expression of cyclin E
LMW protein isotypes represents a normal stable condition,
where the placenta still has some reserve in its capacity to
fulfill the demands of the progressively growing fetus.
However, with pregnancy advancement and from the 34th
to 36th wk in particular, the fetal demands still grow but
the morpho-functional capacity of the placenta remains un-
changed or even declines, and this is often associated with
the development of placental senescence [17, 19–21, 29,
30].

Placental type 2 showed the highest expression of all
cyclin E LMW variants. This may be interpreted as an ef-
fort of the placental structures to regenerate and increase
the surface of the remaining mature terminal villi since high
cyclin E expression is characteristic for early stages of dif-
ferentiation in trophoblast cultures [15]. Hence, the type 2
placentas can be considered as capable of responding and
fulfilling demands of the growing fetus by villous regen-
eration.

Relatively high expression of cE:X in type 2 placentas
and ovarian cancer is of particular importance. The cE:X
seems to be specific for activated mesenchymal cells, and
its expression is enhanced during the early stages of tro-
phoblast differentiation in vitro, as compared with the cE:
X expression in corresponding placentas in vivo (unpub-
lished observations). Early trophoblast cultures show
marked activation of concomitant mesenchymal cells [31],
and mesenchymal cells appear to participate in the regula-
tion of differentiation of tissue-specific cells [32–39] and
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in tumor progression [40–44]. Hence, an enhanced expres-
sion of cE:X in placental type 2 might reflect a contribution
of mesenchymal cells to the stimulation of placental regen-
eration.

When compared with placental type 2, type 3 placentas
showed an enhanced cyclin E expression of some LMW
variants only. This correlated with the maximal dilatation
of villous sinusoids and suggests that trophoblast regener-
ation is somehow inhibited. Hence, the excessive compen-
satory dilatation of sinusoids appears to represent an ulti-
mate adaptive mechanism to fetal hypoxia, as suggested by
others [25].

Type 4 placentas showed lower expression of cyclin E
proteins when compared with types 2 and 3 but signifi-
cantly higher cyclin E:T/S variant when compared with
type 1 placentas. Because both cyclin E:S and cyclin E:T
serve different functions when compared with the cyclin E
isoforms stimulating progression of the cell cycle [11], our
observations concur with those indicating that cyclin E
upregulation (overexpression of cyclins E:S and E:T alone)
also accompanies advanced cellular aging [2–7].

When compared with type 2 and 3 placentas, the type 4
placentas showed a lack of dilatation of villous sinusoids.
This correlated with depletion of Thy-1 expression by vas-
cular pericytes, i.e., cells communicating with endothelial
cells and contributing to the dilatation of vascular lumen in
response to hypoxia [45, 46]. This suggests that a lack of
Thy-11 (mature) pericytes might cause a failure of the pla-
centa to compensate developing fetal hypoxia. As indicated
in Results, a lack of differentiated pericytes may result ei-
ther from accelerated villous aging in atrophic placentas or
a lack of villous maturation (persisting immaturity) char-
acteristic for the hypertrophic placentas of diabetic mothers
[1]. In either case, however, the consequences for the fetus
are similar—the development of fetal hypoxia, which is not
compensated by placental adaptation (dilatation of villous
sinusoids).

Enhanced cyclin E expression in vivo may reflect an
existence of chronic fetal hypoxia and an attempt of the
placenta to correct it. Even in the absence of normal villous
regeneration, the aging placenta has a capacity to improve
its function, e.g., by elongation and excessive dilatation of
villous sinusoids [25, 47]. This may provide a larger surface
for the maternal-fetal interface. This may help the fetus
survive unaffected by an underlying disease process. How-
ever, although chronic adaptations may be successful for
fetal survival, they may lead to adverse outcomes later in
the life of an individual [21].

Our observations on Thy-1 depletion in villous core in-
dicate that, in addition to pregnancy abnormalities, ad-
vanced maternal age plays an important role in cellular and
molecular pathology of the placenta. Several studies have
shown that advanced maternal age (.35 yr) is by itself a
high risk factor [48–51]. Hence, even in otherwise uncom-
plicated pregnancies, advanced maternal age might affect
the quality of the fetal outcome or quality of life of an
individual.

Reactivity of HE12 antibody with high molecular weight
bands (above the cyclin E:L) can also be detected, partic-
ularly in tumor cell extracts [12], yet the nature of these
proteins is unknown. These bands are not detected by HE12
antibody in cdk2 immunoprecipitates [12]. This indicates
that these high molecular weight bands, which appear to
survive the preparation of protein lysates for Western blot
technique, do not include cyclin E/cdk2 complexes. Hence,
the high molecular weight cyclin E bands might represent

covalently bound cyclin E bi- or trimeric complexes with
other functionally related proteins, such as proteins of the
E2F transcription factor family, p18INK4c, p21WAF1/Cip1, and
p27Kip1 (p27) [52–56]. Our recent observations indicate that
the cE:c70 band in ovarian carcinomas in vivo and in
MCF-7 breast carcinoma cells in vitro coincides with a sim-
ilar band in p27 immunoblots (unpublished data). Hence,
the cE:c70 might represent a complex of p27 with 43 kDa
cE:T or cE:S.

In conclusion, because enhanced expression of cyclin E
accompanies cell proliferation and ongoing cellular differ-
entiation and aging, the low cyclin E expression in normal
placentas suggests a steady state of the placenta, i.e., its
ability to fulfill demands of the growing fetus. Overexpres-
sion of all cyclin E LMW proteins may indicate an acti-
vation of the adaptive mechanism (cellular proliferation and
differentiation) that compensates for increasing fetal de-
mands. However, an enhanced expression of fewer cyclin
E LMW proteins might reflect an association of certain cy-
clin E isoforms with placental aging or an inefficient pla-
cental adaptation.
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