1,803 research outputs found

    Casimir force for cosmological domain walls

    Full text link
    We calculate the vacuum fluctuations that may affect the evolution of cosmological domain walls. Considering domain walls, which are classically stable and have interaction with a scalar field, we show that explicit symmetry violation in the interaction may cause quantum bias that can solve the cosmological domain wall problem.Comment: 15 pages, 2figure

    The Zeta Function Method and the Harmonic Oscillator Propagator

    Full text link
    We show how the pre-exponential factor of the Feynman propagator for the harmonic oscillator can be computed by the generalized ζ\zeta-function method. Besides, we establish a direct equivalence between this method and Schwinger's propertime method.Comment: 12 latex pages, no figure

    Casimir Effect in Background of Static Domain Wall

    Get PDF
    In this paper we investigate the vacuum expectation values of energy- momentum tensor for conformally coupled scalar field in the standard parallel plate geometry with Dirichlet boundary conditions and on background of planar domain wall case. First we calculate the vacuum expectation values of energy-momentum tensor by using the mode sums, then we show that corresponding properties can be obtained by using the conformal properties of the problem. The vacuum expectation values of energy-momentum tensor contains two terms which come from the boundary conditions and the the gravitational background. In the Minkovskian limit our results agree with those obtained in [3].Comment: 8 Page

    Scalar Casimir Energies of Tetrahedra

    Full text link
    New results for scalar Casimir self-energies arising from interior modes are presented for the three integrable tetrahedral cavities. Since the eigenmodes are all known, the energies can be directly evaluated by mode summation, with a point-splitting regulator, which amounts to evaluation of the cylinder kernel. The correct Weyl divergences, depending on the volume, surface area, and the corners, are obtained, which is strong evidence that the counting of modes is correct. Because there is no curvature, the finite part of the quantum energy may be unambiguously extracted. Dirichlet and Neumann boundary conditions are considered and systematic behavior of the energy in terms of geometric invariants is explored.Comment: Talk given at QFEXT 1

    Short-range force detection using optically-cooled levitated microspheres

    Full text link
    We propose an experiment using optically trapped and cooled dielectric microspheres for the detection of short-range forces. The center-of-mass motion of a microsphere trapped in vacuum can experience extremely low dissipation and quality factors of 101210^{12}, leading to yoctonewton force sensitivity. Trapping the sphere in an optical field enables positioning at less than 1 μ\mum from a surface, a regime where exotic new forces may exist. We expect that the proposed system could advance the search for non-Newtonian gravity forces via an enhanced sensitivity of 10510710^5-10^7 over current experiments at the 1 μ\mum length scale. Moreover, our system may be useful for characterizing other short-range physics such as Casimir forces.Comment: 4 pages, 3 figures, minor changes, Figs. 1 and 2 replace

    Thermal diffractive corrections to Casimir energies

    Full text link
    We study the interplay of thermal and diffractive effects in Casimir energies. We consider plates with edges, oriented either parallel or perpendicular to each other, as well as a single plate with a slit. We compute the Casimir energy at finite temperature using a formalism in which the diffractive effects are encoded in a lower dimensional non-local field theory that lives in the gap between the plates. The formalism allows for a clean separation between direct or geometric effects and diffractive effects, and makes an analytic derivation of the temperature dependence of the free energy possible. At low temperatures, with Dirichlet boundary conditions on the plates, we find that diffractive effects make a correction to the free energy which scales as T^6 for perpendicular plates, as T^4 for slits, and as T^4 log T for parallel plates.Comment: 31 pages, 7 figures, LaTeX. v2: minor typos fixed, version to appear in PR

    Zero-point momentum in Complex media

    Full text link
    In this work we apply field regularization techniques to formulate a number of new phenomena related to momentum induced by electromagnetic zero-point fluctuations. We discuss the zero-point momentum associated with magneto-electric media, with moving media, and with magneto-chiral media.Comment: submitted to EPJ

    On Casimir Pistons

    Full text link
    In this paper we study the Casimir force for a piston configuration in R3R^3 with one dimension being slightly curved and the other two infinite. We work for two different cases with this setup. In the first, the piston is "free to move" along a transverse dimension to the curved one and in the other case the piston "moves" along the curved one. We find that the Casimir force has opposite signs in the two cases. We also use a semi-analytic method to study the Casimir energy and force. In addition we discuss some topics for the aforementioned piston configuration in R3R^3 and for possible modifications from extra dimensional manifolds.Comment: 20 pages, To be published in MPL

    Non-monotonic thermal Casimir force from geometry-temperature interplay

    Full text link
    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a non-monotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.Comment: 4 pages, 4 figure

    Roughness correction to the Casimir force : Beyond the Proximity Force Approximation

    Full text link
    We calculate the roughness correction to the Casimir effect in the parallel plates geometry for metallic plates described by the plasma model. The calculation is perturbative in the roughness amplitude with arbitrary values for the plasma wavelength, the plate separation and the roughness correlation length. The correction is found to be always larger than the result obtained in the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change
    corecore