2,179 research outputs found

    Time-dependent quantum transport: an exact formulation based on TDDFT

    Full text link
    An exact theoretical framework based on Time Dependent Density Functional Theory (TDDFT) is proposed in order to deal with the time-dependent quantum transport in fully interacting systems. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external electric field is switched on. Our theory includes the interactions between the leads and between the leads and the device. It is well suited for calculating measurable transient phenomena as well as a.c. and other time-dependent responses. We show that the steady-state current results from a \textit{dephasing mechanism} provided the leads are macroscopic and the device is finite. In the d.c. case, we obtain a Landauer-like formula when the effective potential of TDDFT is uniform deep inside the electrodes.Comment: final version, 7 pages, 1 figur

    Stability of hexagonal solidification patterns

    Full text link
    We investigate the dynamics of cellular solidification patterns using three-dimensional phase-field simulations. The cells can organize into stable hexagonal patterns or exhibit unsteady evolutions. We identify the relevant secondary instabilities of regular hexagonal arrays and find that the stability boundaries depend significantly on the strength of crystalline anisotropy. We also find multiplet states that can be reached by applying well-defined perturbations to a pre-existing hexagonal array.Comment: Minor changes, mainly in introduction and conclusion, one reference adde

    Perturbation of Tunneling Processes by Mechanical Degrees of Freedom in Mesoscopic Junctions

    Get PDF
    We investigate the perturbation in the tunneling current caused by non-adiabatic mechanical motion in a mesoscopic tunnel junction. A theory introduced by Caroli et al. \cite{bi1,bi2,bi3} is used to evaluate second order self-energy corrections for this non-equilibrium situation lacking translational invariance. Inelastic signatures of the mechanical degrees of freedom are found in the current-voltage I(V)I(V) characteristics. These give rise to sharp features in the derivative spectrum, d2I/dV2d^2I/dV^2.Comment: 22 pages LaTeX + 3 uuencoded PS picture

    Driven activation versus thermal activation

    Full text link
    Activated dynamics in a glassy system undergoing steady shear deformation is studied by numerical simulations. Our results show that the external driving force has a strong influence on the barrier crossing rate, even though the reaction coordinate is only weakly coupled to the nonequilibrium system. This "driven activation" can be quantified by introducing in the Arrhenius expression an effective temperature, which is close to the one determined from the fluctuation-dissipation relation. This conclusion is supported by analytical results for a simplified model system.Comment: 5 pages, 3 figure

    On apparent breaking the second law of thermodynamics in quantum transport studies

    Full text link
    We consider a model for stationary electronic transport through a one-dimensional chain of two leads attached to a perturbed central region (quantum dot) in the regime where the theory proposed recently by Capek for a similar model of phonon transport predicts the striking phenomenon of a permanent current between the leads. This result based on a rigorous but asymptotic Davies theory is at variance with the zero current yielded by direct transport calculations which can be carried out in the present model. We find the permanent current to be within the error of the asymptotic expansion for finite couplings, and identify cancelling terms of the same order.Comment: 5 pages, 3 figure

    Compton telescope with coded aperture mask: Imaging with the INTEGRAL/IBIS Compton mode

    Get PDF
    Compton telescopes provide a good sensitivity over a wide field of view in the difficult energy range running from a few hundred keV to several MeV. Their angular resolution is, however, poor and strongly energy dependent. We present a novel experimental design associating a coded mask and a Compton detection unit to overcome these pitfalls. It maintains the Compton performance while improving the angular resolution by at least an order of magnitude in the field of view subtended by the mask. This improvement is obtained only at the expense of the efficiency that is reduced by a factor of two. In addition, the background corrections benefit from the coded mask technique, i.e. a simultaneous measurement of the source and background. This design is implemented and tested using the IBIS telescope on board the INTEGRAL satellite to construct images with a 12' resolution over a 29 degrees x 29 degrees field of view in the energy range from 200 keV to a few MeV. The details of the analysis method and the resulting telescope performance, particularly in terms of sensitivity, are presented

    Correlated Nanoscopic Josephson Junctions

    Full text link
    We discuss correlated lattice models with a time-dependent potential across a barrier and show how to implement a Josephson-junction-like behavior. The pairing occurs by a correlation effect enhanced by the symmetry of the system. In order to produce the effect we need a mild distortion which causes avoided crossings in the many-body spectrum. The Josephson-like response involves a quasi-adiabatic evolution in the time-dependent field. Besides, we observe an inverse-Josephson (Shapiro) current by applying an AC bias; a supercurrent in the absence of electromotive force can also be excited. The qualitative arguments are supported by explicit exact solutions in prototype 5-atom clusters with on-site repulsion. These basic units are then combined in ring-shaped systems, where one of the units sits at a higher potential and works as a barrier. In this case the solution is found by mapping the low-energy Hamiltonian into an effective anisotropic Heisenberg chain. Once again, we present evidence for a superconducting flux quantization, i.e. a Josephson-junction-like behavior suggesting the build-up of an effective order parameter already in few-electron systems. Some general implications for the quantum theory of transport are also briefly discussed, stressing the nontrivial occurrence of asymptotic current oscillations for long times in the presence of bound states.Comment: 12 pages, 2 figures, to appear in J. Phys. - Cond. Ma

    Dry Friction due to Adsorbed Molecules

    Full text link
    Using an adiabatic approximation method, which searches for Tomlinson model-like instabilities for a simple but still realistic model for two crystalline surfaces in the extremely light contact limit, with mobile molecules present at the interface, sliding relative to each other, we are able to account for the virtually universal occurrence of "dry friction." The model makes important predictions for the dependence of friction on the strength of the interaction of each surface with the mobile molecules.Comment: four pages of latex, figure provide

    Resonant tunneling and Fano resonance in quantum dots with electron-phonon interaction

    Full text link
    We theoretically study the resonant tunneling and Fano resonance in quantum dots with electron-phonon (e-ph) interaction. We examine the bias-voltage (VV) dependence of the decoherence, using Keldysh Green function method and perturbation with respect to the e-ph interaction. With optical phonons of energy ω0\omega_0, only the elastic process takes place when eV<ω0eV<\omega_0, in which electrons emit and absorb phonons virtually. The process suppresses the resonant amplitude. When eV>ω0eV>\omega_0, the inelastic process is possible which is accompanied by real emission of phonons. It results in the dephasing and broadens the resonant width. The bias-voltage dependence of the decoherence cannot be obtained by the canonical transformation method to consider the e-ph interaction if its effect on the tunnel coupling is neglected. With acoustic phonons, the asymmetric shape of the Fano resonance grows like a symmetric one as the bias voltage increases, in qualitative accordance with experimental results.Comment: 28 pages, 11 figure
    corecore