1,924 research outputs found
Recommended from our members
Stress in physical education teachers in Qatar
Stress is an area of interest among researchers and practitioners in many fields â including teaching. Much of the research on causes of stress for teachers has focused on teachers in general; only a few studies have focused on physical education teachers. Although there have been a few studies of causes of stress for physical education teachers in the Middle East, no studies have been conducted on physical education teachers in Qatar. Thus, the purpose of this study was to identify causes of stress for physical education teachers in Qatar at the beginning and end of the school year as well as any changes over the course of the year. A second purpose was to try to explain any differences in causes of stress according to: gender; nationality; type of school; and amount of experience. Results showed that there were different causes of stress for different groups of teachers which could be related to different backgrounds and experiences and different roles and responsibilities in society as a result of different cultural and social expectations and environmental factors
Evolution of the vorticity-area density during the formation of coherent structures in two-dimensional flows
It is shown: 1) that in two-dimensional, incompressible, viscous flows the
vorticity-area distribution evolves according to an advection-diffusion
equation with a negative, time dependent diffusion coefficient and 2) how to
use the vorticity-streamfunction relations, i.e., the so-called scatter-plots,
of the quasi-stationary coherent structures in order to quantify the
experimentally observed changes of the vorticity distribution moments leading
to the formation of these structures.Comment: LaTeX, 15 pp., 2 eps figures. Some sections have been rewritten;
referees' Comments have been include
Energy dependence of non-local potentials
Recently a variety of studies have shown the importance of including
non-locality in the description of reactions. The goal of this work is to
revisit the phenomenological approach to determining non-local optical
potentials from elastic scattering. We perform a analysis of neutron
elastic scattering data off Ca, Zr and Pb at energies MeV, assuming a Perey and Buck or Tian, Pang, and Ma non-local
form for the optical potential. We introduce energy and asymmetry dependencies
in the imaginary part of the potential and refit the data to obtain a global
parameterization. Independently of the starting point in the minimization
procedure, an energy dependence in the imaginary depth is required for a good
description of the data across the included energy range. We present two
parameterizations, both of which represent an improvement over the original
potentials for the fitted nuclei as well as for other nuclei not included in
our fit. Our results show that, even when including the standard Gaussian
non-locality in optical potentials, a significant energy dependence is required
to describe elastic-scattering data.Comment: 6 pages, 3 figures, accepted by Phys. Rev. C Rapid Communicatio
Switching dynamics between metastable ordered magnetic state and nonmagnetic ground state - A possible mechanism for photoinduced ferromagnetism -
By studying the dynamics of the metastable magnetization of a statistical
mechanical model we propose a switching mechanism of photoinduced
magnetization. The equilibrium and nonequilibrium properties of the Blume-Capel
(BC) model, which is a typical model exhibiting metastability, are studied by
mean field theory and Monte Carlo simulation. We demonstrate reversible changes
of magnetization in a sequence of changes of system parameters, which would
model the reversible photoinduced magnetization. Implications of the calculated
results are discussed in relation to the recent experimental results for
prussian blue analogs.Comment: 12 pages, 13 figure
Data to support study of Iron(II) Complexes of 2,4-Dipyrazolyl-1,3,5-Triazine Derivatives â the Influence of Ligand Geometry on Metal Ion Spin State
Seven derivatives of [FeL2]2+ (L = 2,4-di{pyrazol-1-yl}-1,3,5-triazine) are all high-spin. DFT calculations imply this can be attributed to the geometry of the L ligand
Coulomb corrected eikonal description of the breakup of halo nuclei
The eikonal description of breakup reactions diverges because of the Coulomb
interaction between the projectile and the target. This divergence is due to
the adiabatic, or sudden, approximation usually made, which is incompatible
with the infinite range of the Coulomb interaction. A correction for this
divergence is analysed by comparison with the Dynamical Eikonal Approximation,
which is derived without the adiabatic approximation. The correction consists
in replacing the first-order term of the eikonal Coulomb phase by the
first-order of the perturbation theory. This allows taking into account both
nuclear and Coulomb interactions on the same footing within the computationally
efficient eikonal model. Excellent results are found for the dissociation of
11Be on lead at 69 MeV/nucleon. This Coulomb Corrected Eikonal approximation
provides a competitive alternative to more elaborate reaction models for
investigating breakup of three-body projectiles at intermediate and high
energies.Comment: 19 pages, 9 figures, accepted for publication in Phys. Rev.
Global persistence exponent of the two-dimensional Blume-Capel model
The global persistence exponent is calculated for the
two-dimensional Blume-Capel model following a quench to the critical point from
both disordered states and such with small initial magnetizations.
Estimates are obtained for the nonequilibrium critical dynamics on the
critical line and at the tricritical point.
Ising-like universality is observed along the critical line and a different
value is found at the tricritical point.Comment: 7 pages with 3 figure
Spin Chains as Perfect Quantum State Mirrors
Quantum information transfer is an important part of quantum information
processing. Several proposals for quantum information transfer along linear
arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect
transfer was shown to exist in two models with specifically designed strongly
inhomogeneous couplings. We show that perfect transfer occurs in an entire
class of chains, including systems whose nearest-neighbor couplings vary only
weakly along the chain. The key to these observations is the Jordan-Wigner
mapping of spins to noninteracting lattice fermions which display perfectly
periodic dynamics if the single-particle energy spectrum is appropriate. After
a half-period of that dynamics any state is transformed into its mirror image
with respect to the center of the chain. The absence of fermion interactions
preserves these features at arbitrary temperature and allows for the transfer
of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the
text, one new reference. Accepted by Phys. Rev. A (Rapid Communications
Investigation of the long effective conjugation length in defect-free insulated molecular wires
Due to the âinsulationâ of the Ï-conjugated backbones, insulated molecular wires (IMWs) are expected to be applied to various optoelectronic applications and nanotechnology.[1] Recently, Kazunori et al have succeeded in the synthesis of a self-threading polythiophene with a polyrotaxane-like 3D architecture (PSTB, see Figure 1), for which an intrawire hole mobility of 0.9 cm2 Vâ1 sâ1 has been measured.[2] Here, we aim to evaluate the extent of Ï-conjugation along polythiophene backbones sheathed within defect-free âinsulatingâ layers. A comparison between the experimental Raman spectra of the self-threading oligomers (i.e. 2STB-5STB) and the corresponding PSTB polymer indicates that: (i) the ratio of relative intensities of the two most intense Raman bands (I1375/1445) increases with the elongation of the size chain but does not saturate up to the pentamer, and (ii) Ï-conjugation spreads over 17â18 thiophene units in the polymer. Whether the effective conjugation length of the polymer is better described by using the long oligomer extrapolation approach[3] or periodic DFT calculations of the polymer is discussed in detailed by exploiting the very recent potentialities of state-of-the-art quantum chemical simulations of vibrational properties for crystalline solids.[Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Extended gaussian ensemble solution and tricritical points of a system with long-range interactions
The gaussian ensemble and its extended version theoretically play the
important role of interpolating ensembles between the microcanonical and the
canonical ensembles. Here, the thermodynamic properties yielded by the extended
gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range
interactions are analyzed. This model presents different predictions for the
first-order phase transition line according to the microcanonical and canonical
ensembles. From the EGE approach, we explicitly work out the analytical
microcanonical solution. Moreover, the general EGE solution allows one to
illustrate in details how the stable microcanonical states are continuously
recovered as the gaussian parameter is increased. We found out that it
is not necessary to take the theoretically expected limit
to recover the microcanonical states in the region between the canonical and
microcanonical tricritical points of the phase diagram. By analyzing the
entropy as a function of the magnetization we realize the existence of
unaccessible magnetic states as the energy is lowered, leading to a treaking of
ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten,
tricritical point calculations added. To appear in EPJ
- âŠ