12,415 research outputs found

    Biosatellite attitude stabilization and control system

    Get PDF
    Design and operation of attitude stabilization and control system for Biosatellit

    The role of initial conditions in the ageing of the long-range spherical model

    Full text link
    The kinetics of the long-range spherical model evolving from various initial states is studied. In particular, the large-time auto-correlation and -response functions are obtained, for classes of long-range correlated initial states, and for magnetized initial states. The ageing exponents can depend on certain qualitative features of initial states. We explicitly find the conditions for the system to cross over from ageing classes that depend on initial conditions to those that do not.Comment: 15 pages; corrected some typo

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200

    Dynamic crossover in the global persistence at criticality

    Full text link
    We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.Comment: 5 pages, 2 figure

    An exact solution for the KPZ equation with flat initial conditions

    Full text link
    We provide the first exact calculation of the height distribution at arbitrary time tt of the continuum KPZ growth equation in one dimension with flat initial conditions. We use the mapping onto a directed polymer (DP) with one end fixed, one free, and the Bethe Ansatz for the replicated attractive boson model. We obtain the generating function of the moments of the DP partition sum as a Fredholm Pfaffian. Our formula, valid for all times, exhibits convergence of the free energy (i.e. KPZ height) distribution to the GOE Tracy Widom distribution at large time.Comment: 4 pages, no figur

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Bethe Ansatz approach to quench dynamics in the Richardson model

    Get PDF
    By instantaneously changing a global parameter in an extended quantum system, an initially equilibrated state will afterwards undergo a complex non-equilibrium unitary evolution whose description is extremely challenging. A non-perturbative method giving a controlled error in the long time limit remained highly desirable to understand general features of the quench induced quantum dynamics. In this paper we show how integrability (via the algebraic Bethe ansatz) gives one numerical access, in a nearly exact manner, to the dynamics resulting from a global interaction quench of an ensemble of fermions with pairing interactions (Richardson's model). This possibility is deeply linked to the specific structure of this particular integrable model which gives simple expressions for the scalar product of eigenstates of two different Hamiltonians. We show how, despite the fact that a sudden quench can create excitations at any frequency, a drastic truncation of the Hilbert space can be carried out therefore allowing access to large systems. The small truncation error which results does not change with time and consequently the method grants access to a controlled description of the long time behavior which is a hard to reach limit with other numerical approaches.Comment: Proceedings of the CRM (Montreal) workshop on Integrable Quantum Systems and Solvable Statistical Mechanics Model

    Entanglement entropy of random quantum critical points in one dimension

    Get PDF
    For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.Comment: 4 pages, 3 figure
    • …
    corecore