14 research outputs found

    Role of Nanoclays in Carbon stabilization in Andisols and Cambisols

    Get PDF
    Greenhouse gas (GHG) emissions and their consequent effect on global warming are an issue of global environmental concern. Increased carbon (C) stabilization and sequestration in soil organic matter (SOM) is one of the ways to mitigate these emissions. Here we evaluated the role of nanoclays isolated from soil on C stabilization in both a C rich Andisols and C depleted Cambisols. Nanoclays were analyzed for size and morphology by transmission electron microscopy, for elemental composition and molecular composition using pyrolysis-GC/MS. Moreover, nanoclays were treated with H2O2 to isolate stable SOM associated with them. Our result showed better nanoclay extraction efficiency and higher nanoclay yield for Cambisol compared to Andisols, probably related to their low organic matter content. Nanoclay fractions from both soils were different in size, morphology, surface reactivity and SOM content. Nanoclays in Andisols sequester around 5-times more C than Cambisols, and stabilized 6 to 8-times more C than Cambisols nanoclay after SOM chemical oxidation. Isoelectric points and surface charge of nanoclays extracted from the two soils was very different. However, the chemical reactivity of the nanoclay SOM was similar, illustrating their importance for C sequestration. Generally, the precise C stabilization mechanisms of both soils may be different, with nanoscale aggregation being more important in Andisols. We can conclude that independent of the soil type and mineralogy the nanoclay fraction may play an important role in C sequestration and stabilization in soil-plant systems

    Evaluation of Gas Emissions, Energy Consumption and Production Costs of Warm Mix Asphalt (WMA) Involving Natural Zeolite and Reclaimed Asphalt Pavement (RAP)

    No full text
    Asphalt mixture is the most widely used material in road construction, and the industry is developing more sustainable technologies. Warm mix asphalt (WMA) is a promising alternative as it saves energy, reduces fuel consumption and generates fewer gas and fume emissions, while maintaining a similar performance to hot mix asphalt (HMA). This paper presents an evaluation of the gas emissions at laboratory scale, as well as the energy consumption and production costs, of five types of WMA with the addition of natural zeolite. The control mixture was a HMA manufactured at 155 °C. The mixtures evaluated were two WMA manufactured at 135 °C with 0.3% and 0.6% natural zeolite, and three WMA with partial replacement of raw materials by 10%, 20% and 30% of reclaimed asphalt pavement (RAP); these mixtures, called WMA–RAP, were manufactured at 125 °C, 135 °C and 145 °C, respectively. The results indicated that all the mixtures evaluated reduced CO and CO2 emissions by 2–6% and 17–37%, respectively. The energy consumption presented a 13% decrease. In the current situation, the production costs for WMA with 0.3 and 0.6% natural zeolite are slightly higher than the control mixture, because the saving achieved in fuel consumption is lower than the current cost of the additive. On the other hand, WMA manufactured with the addition of natural zeolite and RAP could produce cost savings of up to 25%, depending on the amounts of RAP and natural zeolite used
    corecore