37 research outputs found

    Return to school in the COVID-19 era: considerations for temperature measurement

    Get PDF
    COVID-19 pandemics required a reorganisation of social spaces to prevent the spread of the virus. Due to the common presence of fever in the symptomatic patients, temperature measurement is one of the most common screening protocols. Indeed, regulations in many countries require temperature measurements before entering shops, workplaces, and public buildings. Due to the necessity of providing rapid non-contact and non-invasive protocols to measure body temperature, infra-red thermometry is mostly used. Many countries are now facing the need to organise the return to school and universities in the COVID-19 era, which require solutions to prevent the risk of contagion between students and/or teachers and technical/administrative staff. This paper highlights and discusses some of the strengths and limitations of infra-red cameras, including the site of measurements and the influence of the environment, and recommends to be careful to consider such measurements as a single \u201csafety rule\u201d for a good return to normality

    Skin wetness sensitivity across body sites commonly affected by pain in people with migraine

    Get PDF
    Objective: The objective of this study was to evaluate skin wetness perception and thermal sensitivity in people with migraine and similar healthy controls.Background: Environmental triggers, such as cold and humidity, are known triggers for pain in people with migraine. Sensory inputs might be implicated in such heightened responses to cold-humid environments, such that a migraine-induced hypersensitivity to cold wetness could be present in people with migraine. However, we lack empirical evidence on skin thermal and wetness sensitivity across skin sites commonly associated with reported pain in migraine, such as the forehead.Methods: This prospective cross-sectional observational study, conducted in a university hospital setting, evaluated skin wetness perceptions and thermal sensations to wet non-noxious warm-wet, neutral-wet, and cold-wet stimuli applied to the forehead, the posterior neck, and the index finger pad of 12 patients with migraine (mean and standard deviation for age 44.5 +/- 13.2 years, 7/12 [58%] women) and 36 healthy controls (mean and standard deviation for age 39.4 +/- 14.6 years, 18/36 [50%] women).Results: On the forehead, people with migraine reported a significantly higher wetness perception than healthy controls across all thermal stimulus (15.1 mm, 95% confidence interval [CI]: 1.8 to 28.5, p = 0.027, corresponding to similar to 15% difference), whereas no significant differences were found on the posterior neck nor on the index finger pad. We found no differences among groups in overall thermal sensations (-8.3 mm, 95% CI: -24.0 to 7.3, p = 0.291; -7.8 mm, 95% CI: -25.3 to 9.7, p = 0.375; and 12.4 mm, 95% CI: -4.0 to 28.9, p = 0.133; forehead, posterior neck, and index finger, respectively).Conclusion: These findings indicate that people with migraine have a heightened sensitivity to skin wetness on the forehead area only, which is where pain attacks occur. Future studies should further explore the underlying mechanisms (e.g., TRPM8-mediated cold-wet allodynia) that lead to greater perception of wetness in people with migraine to better understand the role of environmental triggers in migraine

    Wake-up Stroke Outcome Prediction by Interpretable Decision Tree Model

    Get PDF
    Outcome prediction in wake-up ischemic stroke (WUS) is important for guiding treatment strategies, in order to improve recovery and minimize disability. We aimed at producing an interpretable model to predict a good outcome (NIHSS 7-day<5) in thrombolysis treated WUS patients by using Classification and Regression Tree (CART) method. The study encompassed 104 WUS patients and we used a dataset consisting of demographic, clinical and neuroimaging features. The model was produced by CART with Gini split criterion and evaluated by using 5-fold cross-validation. The produced decision tree model was based on NIHSS at admission, ischemic core volume and age features. The predictive accuracy of model was 86.5% and the AUC-ROC was 0.88. In conclusion, in this preliminary study we identified interpretable model based on clinical and neuroimaging features to predict clinical outcome in thrombolysis treated wake-up stroke patients

    Rapidly evolving Creutzfeldt-Jakob disease in COVID-19: from early status epilepticus to fatal outcome

    Get PDF
    We report the case of a 70-year-old man coming to our attention for new onset refractory status epilepticus (NORSE) in a rapidly evolving CJD during SARS-CoV-2 co-infection. Our case report describes a fulminant CJD evolution associated with SARS-CoV-2 infection, which led to patient death after 15 days from admission. First EEG presented continuous diffuse spikes, sharp waves and sharp-and-slow wave complexes, pattern consistent with a non-convulsive status epilepticus (NORSE). Our case supports how CJD with SARS-CoV-2 co-infection could be characterized by an accelerated evolution, as already hypothesize for others microorganism infections, and how the diagnosis might be more challenging due to its uncommon presentations, such as NORSE

    Effects of a cooling vest with sham condition on walking capacity in heat-sensitive people with Multiple Sclerosis

    Get PDF
    Purpose: Heat sensitivity is a common contraindication in people with Multiple Sclerosis (pwMS), and physical fatigue is one of the most frequently reported symptoms that can affect quality of life. Increases in body temperature may exacerbate fatigue and heat-related symptoms. Decreasing body temperature via cooling devices may mitigate disease symptoms and improve physical abilities and quality of life. This study evaluates the effects of a cooling vest with sham condition on walking capacity using a commercially-available cooling vest specifically designed for pwMS. Methods: A counter-balanced, cross-over design was used to assess the effects of a cooling vest (CryoVest Comfort, CryoInnov, France) (COLD) from a menthol-induced sham condition (CON) on ground walking time to exhaustion (Tex, s) and distance at exhaustion (Dex, m) in ambulatory pwMS. Secondary outcomes were heart rate (HR, bpm), thermal sensation (Tsens), skin chest (Tchest) and back (Tback) temperature. Results: Ten females with Multiple Sclerosis (59 \ub1 9\ua0years, EDSS 3.0\u20135.5) participated to the study. During COLD, pwMS walked significantly longer (1896 \ub1 602 vs. 1399 \ub1 404\ua0s, p < 0.001) and farther (1879 \ub1 539 vs. 1302 \ub1 318\ua0m, p < 0.001) than CON. Importantly, Tsens and HR at exhaustion were not significantly different between conditions, although Tchest ( 12\ua02.7 \ub1 1.8\ua0\ub0C, p < 0.01) and Tback ( 12\ua03.9 \ub1 1.8\ua0\ub0C, p < 0.001) were lower at volitional fatigue during COLD. Conclusion: The lightweight cooling vest improved total walking time and distance in heat-sensitive pwMS. These physiological improvements were likely due to feeling perceptually cooler in the COLD trial, compared to the corresponding point of fatigue in the CON condition

    Marine survival in the Mediterranean

    Get PDF
    Background and Aim: The Mediterranean is one of the major gateways of human migratory fluxes from Northern Africa, the Middle East, and Central Asia to Europe. Sea accidents have become an urgent humanitarian crisis due to the high number of migrants on the move, but data on the physiological effects to sudden cool water immersion are not as extensive as cold-water studies. We wanted to evaluate to what extent cool water immersion (~18 °C) may detrimentally affect cognitive ability and cardiorespiratory strain compared to the more prevalent cold-water (<10–15 °C) studies. Methods: In this case, 10 active, healthy men participated in this study which consisted of completing one familiarization trial, and then a control (CON) or experimental (EXP) trial in a randomized, repeated-measures, cross-over fashion, separated by at least 7-days. Cognitive function was assessed via the Symbol Digit Modalities Test (SDMT), a code substitution test, performed at baseline, then repeated in either a thermoneutral (~25 °C room air) dry environment, or when immersed to the neck in 18 °C water. Testing consisted of six “Step” time-blocks 45-s each, with a 5-s pause between each Step. Cardiorespiratory measures, continuously recorded, included heart rate (beats per minute), minute ventilation (dotVEdot{V}_E, L·min−1^{−1}), oxygen consumption (dotVdot{V}O2_2, L·min−1^{−1}), and respiratory frequency (fR, count·min−1^{−1}). Results: Initial responses to cool water (<2 min) found that participants performed ~11% worse on the code substitution test (p = 0.025), consumed 149% greater amounts of oxygen (CI: 5.1 to 9.1 L·min−1^{−1}, p < 0.0001) and experienced higher cardiovascular strain (HR CI: 13 to 38 beats per minute, p = 0.001) than during the control trial. Physiological strain was in-line to those observed in much colder water temperature. Conclusion: Sudden, cool water immersion also negatively affects cognitive function and cardiorespiratory strain, especially during the first two minutes of exposure. The magnitude increase in heart rate is strongly associated with poorer cognitive function, even in (relatively) warmer water consistent with temperatures found in the Mediterranean Sea environment

    Up in the air

    Full text link
    The microclimate of an airline cabin consists of dry, recirculated, and cool air, which is maintained at lower pressure than that found at sea level. Being exposed to this distinctive, encapsulated environment for prolonged durations, together with the short-term chair-rest immobilization that occurs during long-haul flights, can trigger distinct and detrimental reactions to the human body. There is evidence that long-haul flights promote fluid shifts to the lower extremity and induce changes in blood viscosity which may accelerate dehydration, possibly compromising an athlete’s potential for success upon arrival at their destination. Surprisingly, and despite several recent systematic reviews investigating the effects of jet lag and transmeridian travel on human physiology, there has been no systematic effort to address to what extent hypohydration is a (health, performance) risk to travelers embarking on long journeys. This narrative review summarizes the rationale and evidence for why the combination of fluid balance and long-haul flight remains a critically overlooked issue for traveling persons, be it for health, leisure, business, or in a sporting context. Upon review, there are few studies which have been conducted on actual traveling athletes, and those that have provide no real evidence of how the incidence rate, magnitude, or duration of acute dehydration may affect the general health or performance of elite athletes

    Up in the Air: Evidence of Dehydration Risk and Long-Haul Flight on Athletic Performance

    No full text
    The microclimate of an airline cabin consists of dry, recirculated, and cool air, which is maintained at lower pressure than that found at sea level. Being exposed to this distinctive, encapsulated environment for prolonged durations, together with the short-term chair-rest immobilization that occurs during long-haul flights, can trigger distinct and detrimental reactions to the human body. There is evidence that long-haul flights promote fluid shifts to the lower extremity and induce changes in blood viscosity which may accelerate dehydration, possibly compromising an athlete&rsquo;s potential for success upon arrival at their destination. Surprisingly, and despite several recent systematic reviews investigating the effects of jet lag and transmeridian travel on human physiology, there has been no systematic effort to address to what extent hypohydration is a (health, performance) risk to travelers embarking on long journeys. This narrative review summarizes the rationale and evidence for why the combination of fluid balance and long-haul flight remains a critically overlooked issue for traveling persons, be it for health, leisure, business, or in a sporting context. Upon review, there are few studies which have been conducted on actual traveling athletes, and those that have provide no real evidence of how the incidence rate, magnitude, or duration of acute dehydration may affect the general health or performance of elite athletes

    Intravenous immunoglobulin response in new-onset refractory status epilepticus (NORSE) COVID-19 adult patients

    Get PDF
    Neurological manifestations may be common in COVID-19 patients. They may include several syndromes, such as a suggested autoimmune abnormal response, which may result in encephalitis and new-onset refractory status epilepticus (NORSE). Quickly recognizing such cases and starting the most appropriate therapy is mandatory due to the related rapid worsening and bad outcomes. This case series describes two adult patients admitted to the university hospital and positive to novel coronavirus 2019 (SARS-CoV-2) infection who developed drug-resistant status epilepticus. Both patients underwent early electroencephalography (EEG) assessment, which showed a pathological EEG pattern characterized by general slowing, rhythmic activity and continuous epileptic paroxysmal activity. A suspected autoimmune etiology, potentially triggered by SARS-CoV-2 infection, encouraged a rapid work-up for a possible autoimmune encephalitis diagnosis. Therapeutic approach included the administration of 0.4\ua0g/kg intravenous immunoglobulin, which resulted in a complete resolution of seizures after 5 and after 10 days, respectively, without adverse effects and followed by a normalization of the EEG patterns

    Neuromuscular performance after rapid weight loss in Olympic-style boxers

    No full text
    The present study investigated the effect of a 3% rapid weight loss (RWL) procedure on neuromuscular performance in elite, Olympic-style boxers. Nine boxers were randomly assigned to two experimental procedures (RWL and control, in a randomized counter-balance order) to perform 5-s maximum isometric voluntary contractions (MVC) of the dominant leg knee extensors prior to (MVC1), and following (MVC2), a sustained, isometric contraction at 70% MVC until exhaustion. The voluntary activation (VA) was determined using percutaneous muscle stimulation and interpolated twitch technique. High (at 80 Hz) and low (at 20 Hz) frequency tetanic impulses were also delivered before and after the sustained 70% MVC to assess peripheral fatigue. Hydration status, hemodynamic parameters, and lactate concentration were assessed throughout the study. Body-mass was reduced by 3c3% (during RWL) compared to control (p =.001). As a result of the RWL protocol, MVC1 force output was 12% lower and VA deficits of 7% were observed after the fatigue protocol compared to control (p =.001). Following RWL, time to exhaustion for the sustained 70% MVC was 69 \ub1 20 s compared to 86 \ub1 34 s for control (p =.020). Peak lactate production was 53% lower in RWL compared to control (p =.001). In conclusion, the 3% RWL procedure translated into significant decline in neuromuscular performance for both brief and sustained contractions in competitive boxers
    corecore