19 research outputs found

    Soybeans Processing for Biodiesel Production

    Get PDF

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Estimating Rooftop Areas of Poultry Houses Using UAV and Satellite Images

    No full text
    Poultry production requires electricity for optimal climate control throughout the year. Demand for electricity in poultry production peaks during summer months when solar irradiation is also high. Installing solar photovoltaic (PV) panels on the rooftops of poultry houses has potential for reducing the energy costs by reducing the electricity demand charges of utility companies. The objective of this research was to estimate the rooftop areas of poultry houses for possible PV installation using aerial images acquired with a commercially available low-cost unmanned aerial vehicle (UAV). Overhead images of 31 broiler houses were captured with a UAV to assess their potential for solar energy applications. Building plan dimensions were acquired and building heights were independently measured manually. Images were captured by flying the UAV in a double grid flight path at a 69-m altitude using an onboard 4K camera at an angle of −80° from the horizon with 70% and 80% overlaps. The captured images were processed using Agisoft Photoscan Professional photogrammetry software. Orthophotos of the study areas were generated from the acquired 3D image sequences using structure from motion (SfM) techniques. Building rooftop overhang obscured building footprint in aerial imagery. To accurately measure building dimensions, 0.91 m was subtracted from building roof width and 0.61 m was subtracted from roof length based on blueprint dimensions of the poultry houses. The actual building widths and lengths ranged from 10.8 to 184.0 m and the mean measurement error using the UAV-derived orthophotos was 0.69% for all planar dimensions. The average error for building length was 1.66 ± 0.48 m and the average error for widths was 0.047 ± 0.13 m. Building sidewall, side entrance and peak heights ranged from 1.9 to 5.6 m and the mean error was 0.06 ± 0.04 m or 1.2%. When compared to the horizontal accuracy of the same building measurements taken from readily available satellite imagery, the mean error in satellite images was −0.36%. The average length error was −0.46 ± 0.49 m and −0.44 ± 0.14 m for building widths. The satellite orthomosaics were more accurate for length estimations and the UAV orthomosaics were more accurate for width estimations. This disparity was likely due to the flight altitude, camera field of view, and building shape. The results proved that a low-cost UAV and photogrammetric SfM can be used to create digital surface models and orthomosaics of poultry houses without the need for survey-grade equipment or ground control points

    Development of an Automated Linear Move Fertigation System for Cotton Using Active Remote Sensing

    No full text
    Optimum nitrogen (N) application is essential to the economic and environmental sustainability of cotton production. Variable-rate N fertigation could potentially help farmers optimize N applications, but current overhead irrigation systems normally lack automated site-specific variable-rate fertigation capabilities. The objective of this study was to develop an automated variable-rate N fertigation based on real-time Normalized Difference Vegetation Index (NDVI) measurements from crop sensors integrated with a lateral move irrigation system. For this purpose, NDVI crop sensors and a flow meter integrated with Arduino microcontrollers were constructed on a linear move fertigation system at the Edisto Research and Education Center in Blackville, South Carolina. A computer program was developed to automatically apply site-specific variable N rates based on real-time NDVI sensor data. The system’s ability to use the NDVI data to prescribe N rates, the flow meter to monitor the flow of N, and a rotary encoder to establish the lateral’s position were evaluated. Results from this study showed that the system could accurately use NDVI data to calculate N rates when compared to hand calculated N rates using a two-sample t-test (p > 0.05). Linear regression analysis showed a strong relationship between flow rates measured using the flow meter and hand calculations (R2 = 0.95), as well as the measured distance travelled using the encoder and the actual distance travelled (R2 = 0.99). This study concludes that N management decisions can be automated using NDVI data from on-the-go handheld GreenSeeker crop sensors. The developed system can provide an alternative N application solution for farmers and researchers

    Hydraulic characterization of Diesel and water emulsions using momentum flux

    Get PDF
    D. R. Emberson, et al, 'Hydraulic characterization of Diesel and water emulsions using momentum flux', Fuel, Vol. 162, pp. 23-33, December 2015, doi: https://doi.org/10.1016/j.fuel.2015.08.016. © 2015 Published by Elsevier Ltd.Diesel and water emulsions have the potential to be used in compression ignition engines to control the emissions of NOx and PM. Very little is known about the influence emulsification will have on the fuel sprays formed during injection. This paper outlines the measurement of the momentum flux of injection sprays of Diesel fuel and Diesel fuel emulsions containing 10% and 20% water, with the goal of hydraulically characterizing the sprays and identifying the influence emulsification may have on them. The momentum flux, mass flow, instantaneous mass flow, discharge coefficient, injection velocity, momentum coefficient and momentum efficiency have been examined. The injections were carried out in a high pressure chamber filled with nitrogen. The measured momentum flux is observed to increase with increasing injection pressure in a linear form. Increasing the ambient density in the chamber resulted in a decrease in the measured momentum flux. The emulsified fuel sprays had a very similar momentum flux as the neat Diesel fuel sprays. The total mass of emulsified fuel injected was less than for neat Diesel at corresponding condition. The instantaneous mass flow rate was determined using a normalized form of the momentum flux measurement and the independently measured total mass injected. The emulsions tended to have a lower discharge coefficient and there is no evidence that the nozzle is cavitating at these conditions. The emulsified fuels have tended to have a higher injection velocity than the neat Diesel fuel sprays. The momentum efficiency is introduced, which uses the instantaneous mass measurement and the theoretical velocity of the spray. The emulsified fuels have a larger momentum efficiency, a result of their high injection velocity compared with the neat Diesel fuel.Peer reviewe

    Optical characterization of Diesel and water emulsion fuel injection sprays using shadowgraphy

    Get PDF
    D. R. Emberson, B, Ihracska, S. Imran, and A. Diez, 'Optical characterization of Diesel and water emulsion fuel injection sprays using shadowgraphy', Fuel, Vol. 172: 253-262, May 2016. The Version of Record is available online at doi: https://doi.org/10.1016/j.fuel.2016.01.015.Diesel fuel and water emulsions have been shown to reduce emissions of NOx and PM from compression ignition engines. There is a lack of work examining the influence of emulsification on the sprays formed during injection. This work examines the spray cone angle and tip penetration of Diesel fuel and water emulsions, containing 10% and 20% water (by mass). All experiments were conducted under nonreacting, non-vaporizing conditions in a constant volume pressure chamber filled with nitrogen. A focused shadowgraph system, with high speed photography, coupled with a research, high current LED system was used. Differences in the spray cone angle suggest the emulsification did have an effect for the injections at a pressure of 500 bar. Emulsification had no discernible effect on the spray tip penetration. Spray tip penetration showed agreement with previous trends in terms of proportionality to time after start of injection however agreement with models found in the literature was not consistent.Peer reviewe
    corecore