196 research outputs found
Π Π°Π·Π½ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ ΡΠ΅ΠΌΡΠ½: ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ° (ΠΎΠ±Π·ΠΎΡ)
The practice of application of terms characterizing the phenomenon of variability andΒ heterogeneity of seeds, fruits and diasporas is given. The ambiguity and inconsistency of some of them is shown. The methods of systematization and typification of seedsΒ of different quality, based on the features and nature of the manifestation of variability of seed characteristics and causes of their causes, are considered. The mainΒ directions of practical use of knowledge about seed polymorphism, including toΒ increase seed productivity and optimize the variability of seed parameters in theΒ growing process, are shown. The principles of evaluation and selection of alignedΒ fractions by morphological features correlated with high sowing and productive qualities in the process of seed refinement in the post-harvest period are presented. TheΒ morphological and anatomical causes of defects and injuries in the process of dryingΒ and processing of seeds as specific indicators of different quality are considered. TheΒ use of dispersion analysis to identify the contribution of hereditary, environmental andΒ matrix factors in the variability of morphological characteristics of seeds, includingΒ the length of the embryo, is discussed. The features of the signs ofΒ abnormal variability of seeds, which have an obvious and hidden nature of manifestation, are shown.Β Methods of selection improvement of morfometric parameters, physiological, biochemical and productive properties of seeds as methods of cardinal improvement ofΒ quality of seeds are discussed.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ², Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΡ
ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ ΠΈ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΠ΅ΠΌΡΠ½, ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ Π΄ΠΈΠ°ΡΠΏΠΎΡ. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π½Π΅ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΡΡΡ ΠΈΒ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ²ΠΎΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΈΠ· Π½ΠΈΡ
. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΈΠ΅ΠΌΡ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΒ ΡΠΈΠΏΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°Π·Π½ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅ΠΌΡΠ½, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π° ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ
ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΡΠ΅ΠΌΡΠ½ ΠΈ ΠΏΡΠΈΡΠΈΠ½Π°Ρ
, ΠΈΡ
Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
.Β ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ΅ ΡΠ΅ΠΌΡΠ½, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅, Π΄Π»Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΎΠ²ΠΎΠ΄ΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ.Β ΠΠ·Π»ΠΎΠΆΠ΅Π½Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΈ ΠΎΡΠ±ΠΎΡΠ° Π²ΡΡΠ°Π²Π½Π΅Π½Π½ΡΡ
ΡΡΠ°ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ, ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΡΠΌ Ρ Π²ΡΡΠΎΠΊΠΈΠΌΠΈ ΠΏΠΎΡΠ΅Π²Π½ΡΠΌΠΈ ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π΄ΠΎΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅ΠΌΡΠ½ Π² ΠΏΠΎΡΠ»Π΅ΡΠ±ΠΎΡΠΎΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄.Β Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π°Π½Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΡΠΈΠ½Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡΒ Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ² ΠΈ ΡΡΠ°Π²ΠΌ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΡΠΊΠΈ ΠΈ Π΄ΠΎΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅ΠΌΡΠ½, ΠΊΠ°ΠΊ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ°Π·Π½ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ. ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ Π²ΠΊΠ»Π°Π΄Π° Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ, ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΌΠ°ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎΒ ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π² ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΡΠ΅ΠΌΡΠ½, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π΄Π»ΠΈΠ½ΡΒ Π·Π°ΡΠΎΠ΄ΡΡΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ ΡΠ΅ΠΌΡΠ½,Β ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΠ²Π½ΡΠΉ ΠΈ ΡΠΊΡΡΡΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ. ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΏΡΠΈΠ΅ΠΌΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ΅ΠΌΡΠ½, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΊΠ°ΡΠ΄ΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎΒ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ΅ΠΌΡΠ½
ΠΠ°ΡΠΎΠ΄ΡΡ ΠΈ ΠΌΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ΅ΠΌΡΠ½ ΠΎΠ²ΠΎΡΠ½ΡΡ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΠΠΎΠ½ΡΠΈΡΠ½ΡΠ΅ ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ
The work is devoted to the study of statistical parameters of the linear dimensions of the seed, endosperm and embryo, variability, correlations, and the manifestation of these traits in hybrid combinations. Morphometric parameters largely determine the quality of seeds. The presence of an underdeveloped embryo determines the duration of the period of heterotrophic development of the seedling, affects germination, energy, longevity, seed response to changes in germination conditions, and, ultimately, increases the interphase period from sowing to germination. The article shows the high variability of these parameters in numerous representatives of vegetable crops - representatives of the Umbelliferae (Apiaceae) family, analyzes the causes that cause them, and predicts the potential use of this variability in breeding programs. The object of research was the seeds of various varieties of carrots, parsley, parsnips, celery, dill. Measurement of the length of the seed and endosperm was carried out using a caliper. The length of the embryo was determined using a microscope and a video eyepiece at Γ40 magnification using the Scope Photo program. The experiment was repeated four times, in each repetition at least 20 seeds. The values of the coefficient of variation in the length of the endosperm and seed varied from 9 to 19%, depending on the species and cultivar characteristics. The variability of the embryo reached 18-28%. between the size of the embryo on the one hand and the length of the endosperm (0.208-0.369) and seed (0.213-0.376) on the other, weak correlations were noted, indicating the independent inheritance of these parameters. The hereditary conditionality of the variability of the embryo, endosperm and seed of carrots (50.8-86.5%) and parsnips (49.6-58.9%) is shown, which characterizes the real possibility of their breeding improvement. In the process of studying distant hybrids of carrots (the parental forms of which differed sharply in morphometric parameters of seeds), it was found that F1 hybrids for these traits predominantly showed positive overdominance (38.1%) and dominance (16.7%). According to the complex of relative parameters (indices), negative overdominance (23.8%) and dominance (4.8%) were more often noted. The results of many years of research indicate that the morphometric parameters (length of the seed, endosperm, embryo) and their ratios (indices) of seeds, like any other biological traits, are genetically determined and depend on species and cultivar characteristics. A comparison of wild-growing and varietal samples of carrots indicates that in the process of cultivation, the size of the embryo underwent significant upward changes, even in the absence of targeted selection. Therefore, when applying artificial selection in this direction, one can expect more significant results.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ Π·Π°ΡΠΎΠ΄ΡΡΠ°, ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ, ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠ²ΡΠ·ΡΠΌ, ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΡΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π² Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡΡ
. ΠΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΠΌΡΠ½. ΠΠ°Π»ΠΈΡΠΈΠ΅ Π½Π΅Π΄ΠΎΡΠ°Π·Π²ΠΈΡΠΎΠ³ΠΎ Π·Π°ΡΠΎΠ΄ΡΡΠ° ΠΎΠ±ΡΡΠ»Π°Π²Π»ΠΈΠ²Π°Π΅Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π³Π΅ΡΠ΅ΡΠΎΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΎΡΠΎΡΡΠΊΠ°, Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π²ΡΡ
ΠΎΠΆΠ΅ΡΡΡ, ΡΠ½Π΅ΡΠ³ΠΈΡ, Π΄ΠΎΠ»Π³ΠΎΠ²Π΅ΡΠ½ΠΎΡΡΡ, ΡΠ΅Π°ΠΊΡΠΈΡ ΡΠ΅ΠΌΡΠ½ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΏΡΠΎΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ, Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅, ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΌΠ΅ΠΆΡΠ°Π·Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΎΡ ΠΏΠΎΡΠ΅Π²Π° Π΄ΠΎ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π²ΡΡ
ΠΎΠ΄ΠΎΠ². Π ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΡΡΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ ΠΎΠ²ΠΎΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ β ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΠΠΎΠ½ΡΠΈΡΠ½ΡΠ΅, Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡΡΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ, ΠΈΡ
Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΡΠ΅ΡΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΎΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ Π² ΡΠ΅Π»Π΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°Ρ
. ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠ΅ΠΌΠ΅Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΎΡΡΠΎΠ² ΠΌΠΎΡΠΊΠΎΠ²ΠΈ, ΠΏΠ΅ΡΡΡΡΠΊΠΈ, ΠΏΠ°ΡΡΠ΅ΡΠ½Π°ΠΊΠ°, ΡΠ΅Π»ΡΠ΄Π΅ΡΠ΅Ρ, ΡΠΊΡΠΎΠΏΠ°. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π½Π³Π΅Π½ΡΠΈΡΠΊΡΠ»Ρ. ΠΠ»ΠΈΠ½Ρ Π·Π°ΡΠΎΠ΄ΡΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° ΠΈ Π²ΠΈΠ΄Π΅ΠΎΠΎΠΊΡΠ»ΡΡΠ° ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Γ40, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Scope Photo. ΠΠΎΠ²ΡΠΎΡΠ½ΠΎΡΡΡ ΠΎΠΏΡΡΠ° ΡΠ΅ΡΡΡΠ΅Ρ
ΠΊΡΠ°ΡΠ½Π°Ρ, Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΎΡΡΠΈ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 20 ΡΠ΅ΠΌΡΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π²Π°ΡΠΈΠ°ΡΠΈΠΈ Π΄Π»ΠΈΠ½Ρ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΡ 9 Π΄ΠΎ 19%, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΠΈΠ΄ΠΎΠ²ΡΡ
ΠΈ ΡΠΎΡΡΠΎΠ²ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ. ΠΠ°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ Π·Π°ΡΠΎΠ΄ΡΡΠ° Π΄ΠΎΡΡΠΈΠ³Π°Π»Π° 18-28%. ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ Π·Π°ΡΠΎΠ΄ΡΡΠ° Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° (0,208-0,369) ΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΈ (0,213-0,376) Ρ Π΄ΡΡΠ³ΠΎΠΉ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ ΡΠ»Π°Π±ΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΌ Π½Π°ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½Π° Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ Π·Π°ΡΠΎΠ΄ΡΡΠ°, ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΡΠΊΠΎΠ²ΠΈ (50,8-86,5%) ΠΈ ΠΏΠ°ΡΡΠ΅ΡΠ½Π°ΠΊΠ° (49,6-58,9%), ΡΡΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡ
ΡΠ΅Π»Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΡ
Π³ΠΈΠ±ΡΠΈΠ΄ΠΎΠ² ΠΌΠΎΡΠΊΠΎΠ²ΠΈ (ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΅Π·ΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π»ΠΈΡΡ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΡΠ΅ΠΌΡΠ½) Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ F1 Π³ΠΈΠ±ΡΠΈΠ΄Ρ ΠΏΠΎ ΡΡΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠΎΡΠ²Π»ΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²Π΅ΡΡ
Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ (38,1%) ΠΈ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ (16,7%). ΠΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² (ΠΈΠ½Π΄Π΅ΠΊΡΠΎΠ²) ΡΠ°ΡΠ΅ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²Π΅ΡΡ
Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ (23,8%) ΠΈ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ (4,8%). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ, ΡΡΠΎ ΠΌΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ (Π΄Π»ΠΈΠ½Π° ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ°, Π·Π°ΡΠΎΠ΄ΡΡΠ°) ΠΈ ΠΈΡ
ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ (ΠΈΠ½Π΄Π΅ΠΊΡΡ) ΡΠ΅ΠΌΡΠ½, ΠΊΠ°ΠΊ ΠΈ Π»ΡΠ±ΡΠ΅ Π΄ΡΡΠ³ΠΈΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ, Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Ρ ΠΈ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ Π²ΠΈΠ΄ΠΎΠ²ΡΡ
ΠΈ ΡΠΎΡΡΠΎΠ²ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΠΊΠΎΡΠ°ΡΡΡΡΠΈΡ
ΠΈ ΡΠΎΡΡΠΎΠ²ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΌΠΎΡΠΊΠΎΠ²ΠΈ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠΊΡΠ»ΡΡΡΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅Ρ Π·Π°ΡΠΎΠ΄ΡΡΠ° ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°Π» ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΡΡΠΎΡΠΎΠ½Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ, Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ ΡΠ΅Π»Π΅Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ±ΠΎΡΠ°. ΠΠΎΡΡΠΎΠΌΡ, ΠΏΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ±ΠΎΡΠ° Π² ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΆΠΈΠ΄Π°ΡΡ Π±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
Π‘Π΅ΠΌΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΠΌΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ΅ΠΌΡΠ½ Myrrhis odorata (L.) Scop. Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΠΎΡΠΊΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ
The research was carried out in 2018 β 2022 at the Experimental Production Farm βBykovoβ AllRussian Research Institute of Vegetable Growing - a branch of the FSBSI βFSCVGβ (Federal State Budgetary Scientific Institution βFederal Scientific Center for Vegetable Growingβ). The pilot site is located in the Ramenskoye district of the Moscow Region in the floodplain of the Moscow River. The object was Myrris scented, a representative of the Umbrella family (Umbelliferae). The genus Myrrhis includes the single species Myrrhis odorata (L.) SCOP. The Myrrhis plantation was laid out in 2009. The plot size is 8 m2, on which 20 plants are located at the rate of 2.5 pcs. / m2. Care consisted of loosening, manual weeding and 1-2 watering. Fruit harvesting was carried out at the onset of the first frost. The seeds were harvested by hand and matured 1.5 β 2 months after harvesting. The seed length (using a calliper), endosperm and embryo (using a microscope and a video eyepiece) were measured in four repetitions of 30 seeds each. The indices IE/S (Embryo/Seed), IE/E (Embryo /Endosperm) and IE/S (Endosperm/Seed) were calculated, showing the ratios of these indicators. Embryo/seed, Embryo /endosperm, and Endosperm/seed Depending on the year, the seed productivity was 13.6 β 27.3 g/plant, and the estimated yield was 339.1 β 682.0 kg/hectare. The seeds of Myrris scented had a fairly large size (16.75 - 22.23 mm) but contained a tiny embryo (1.24 - 1.99 mm), which was only 6-11% of the seed length and 7-13% of the endosperm. In comparison with other representatives of the umbrella family, Myrris scented has one of the lowest values of the index IE/E (Embryo /Endosperm). According to this indicator, its seeds should be attributed to the last fifth class. It is a tiny embryo that is one of the reasons for the phenomenon of rest inherent in the sources of myrrh scented. Furthermore, the seeds have a large percentage (10.0 β 73.3) of the phenomenon of germ-free, one of the causes of which is damage to the striped shield (Graphosoma lineatum L.).ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ Π² 2018β2022 Π³Π³. Π² ΠΠΠ₯ Β«ΠΡΠΊΠΎΠ²ΠΎΒ» ΠΠΠΠ ΠΎΠ²ΠΎΡΠ΅Π²ΠΎΠ΄ΡΡΠ²Π° β ΡΠΈΠ»ΠΈΠ°Π»Π° Π€ΠΠΠΠ£ Π€ΠΠ¦Π. ΠΠΏΡΡΠ½ΡΠΉ ΡΡΠ°ΡΡΠΎΠΊ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π² Π Π°ΠΌΠ΅Π½ΡΠΊΠΎΠΌ ΡΠ°ΠΉΠΎΠ½Π΅ ΠΠΎΡΠΊΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π² ΠΏΠΎΠΉΠΌΠ΅ ΡΠ΅ΠΊΠΈ ΠΠΎΡΠΊΠ²Ρ. ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ ΡΠ»ΡΠΆΠΈΠ»Π° ΠΌΠΈΡΡΠΈΡ Π΄ΡΡΠΈΡΡΠ°Ρ β ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Ρ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΠΠΎΠ½ΡΠΈΡΠ½ΡΠ΅ (Umbelliferae). Π ΠΎΠ΄ Myrrhis Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ Π²ΠΈΠ΄ Myrrhis odorata (L.) Scop. ΠΠ»Π°Π½ΡΠ°ΡΠΈΡ ΠΌΠΈΡΡΠΈΡ Π±ΡΠ»Π° Π·Π°Π»ΠΎΠΆΠ΅Π½Π° Π² 2009 Π³. Π Π°Π·ΠΌΠ΅Ρ Π΄Π΅Π»ΡΠ½ΠΊΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 8 ΠΌ2, Π½Π° Π½Π΅ΠΉ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ 20 ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΈΠ· ΡΠ°ΡΡΠ΅ΡΠ° 2,5ΡΡ/ ΠΌ2 . Π£Ρ
ΠΎΠ΄ Π·Π°ΠΊΠ»ΡΡΠ°Π»ΡΡ Π² ΡΡΡ
Π»Π΅Π½ΠΈΠΈ, ΡΡΡΠ½ΡΡ
ΠΏΡΠΎΠΏΠΎΠ»ΠΊΠ°Ρ
ΠΈ 1β2 ΠΏΠΎΠ»ΠΈΠ²Π°Ρ
. Π£Π±ΠΎΡΠΊΡ ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡΠΈ Π½Π°ΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ²ΡΡ
Π·Π°ΠΌΠΎΡΠΎΠ·ΠΊΠΎΠ². Π‘Π΅ΠΌΠ΅Π½Π° ΡΠ±ΠΈΡΠ°Π»ΠΈ Π²ΡΡΡΠ½ΡΡ ΠΈ Π΄ΠΎΠ·Π°ΡΠΈΠ²Π°Π»ΠΈ 1,5β2 ΠΌΠ΅ΡΡΡΠ° ΠΏΠΎΡΠ»Π΅ ΡΠ±ΠΎΡΠΊΠΈ. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠ΅Π½ΠΈ (Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π½Π³Π΅Π½ΡΠΈΡΠΊΡΠ»Ρ), ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ Π·Π°ΡΠΎΠ΄ΡΡΠ° (Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° ΠΈ Π²ΠΈΠ΄Π΅ΠΎΠΎΠΊΡΠ»ΡΡΠ°) ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ Π² ΡΠ΅ΡΡΡΠ΅Ρ
ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΎΡΡΡΡ
ΠΏΠΎ 30 ΡΠ΅ΠΌΡΠ½ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ. Π Π°ΡΡΡΠΈΡΡΠ²Π°Π»ΠΈ ΠΈΠ½Π΄Π΅ΠΊΡΡ IΠ/Π‘, IΠ/Π, IΠ/Π‘, ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ. Π‘Π΅ΠΌΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π³ΠΎΠ΄Π° ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° 13,6β27,3 Π³ Π½Π° ΡΠ°ΡΡΠ΅Π½ΠΈΠ΅, Π° ΡΠ°ΡΡΠ΅ΡΠ½Π°Ρ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΡ 339,1β682,0 ΠΊΠ³/Π³Π°. Π‘Π΅ΠΌΠ΅Π½Π° Ρ ΠΌΠΈΡΡΠΈΡ Π΄ΡΡΠΈΡΡΠΎΠΉ ΠΈΠΌΠ΅Π»ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΊΡΡΠΏΠ½ΡΠΉ ΡΠ°Π·ΠΌΠ΅Ρ (16,75β22,23 ΠΌΠΌ), Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π»ΠΈ ΠΎΡΠ΅Π½Ρ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΉ Π·Π°ΡΠΎΠ΄ΡΡ (1,24β1,99 ΠΌΠΌ), ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΠ» Π²ΡΠ΅Π³ΠΎ 6β11% ΠΎΡ Π΄Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ 7β13 % ΠΎΡ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ°. ΠΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»ΡΠΌΠΈ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° Π·ΠΎΠ½ΡΠΈΡΠ½ΡΠ΅ ΠΌΠΈΡΡΠΈΡ Π΄ΡΡΠΈΡΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ°ΠΌΡΡ
Π½ΠΈΠ·ΠΊΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡΠ° IΠ/Π ΠΠΎ ΡΡΠΎΠΌΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π΅Π΅ ΡΠ΅ΠΌΠ΅Π½Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠ½Π΅ΡΡΠΈ ΠΊ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌΡ, ΠΏΡΡΠΎΠΌΡ, ΠΊΠ»Π°ΡΡΡ. ΠΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ, ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΉ Π·Π°ΡΠΎΠ΄ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΠΈΡΠΈΠ½ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠΎΡ, ΠΏΡΠΈΡΡΡΠ΅Π³ΠΎ ΡΠ΅ΠΌΠ΅Π½Π°ΠΌ ΠΌΠΈΡΡΠΈΡ Π΄ΡΡΠΈΡΡΠΎΠΉ. Π£ ΡΠ΅ΠΌΡΠ½ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ (10,0β73,3%) Π±Π΅Π·Π·Π°ΡΠΎΠ΄ΡΡΠ΅Π²ΠΎΡΡΠΈ, ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΠΈΡΠΈΠ½ ΠΊΠΎΡΠΎΡΠΎΠΉ, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ½ΠΈΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΡΠ°ΡΡΠΌ (Graphosoma lineatum L.)
Rotational dynamics of copper(II) amino acid complexes by EPR and NMR relaxation methods
Rotational dynamics of the copper(II) bis-complexes with glycine and L-aspartic acid has been studied by EPR and NMR relaxation methods in aqueous solutions at several temperatures. Dynamical parameters obtained by EPR were compared with nuclear magnetic relaxation dispersion (NMRD) results and were found to be in a good agreement. From EPR data dominating trans isomer for Cu(Gly)2 and cis isomer for Cu(L-Asp)2 2- was found. On the basis of distance of closest approach of protons to central ion inferred from NMRD and crystal structure data the average slope angles of axial water molecule to equatorial plane were calculated and axial coordination of only one water molecule in the Cu(L-Asp)2 2- complex was established
Greening in Modern Football
Π‘Π°ΠΌΠ°Ρ Π°ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΠΌΠ° ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ β ΠΎΡ
ΡΠ°Π½Π° ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ. ΠΠ°ΠΊΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠΏΠΎΡΡΡ? Π‘ΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΏΠΎΠΈΡΠΊΡ ΠΎΡΠ²Π΅ΡΠ° Π½Π° Π΄Π°Π½Π½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ. ΠΠ·ΡΡΠ΅Π½ ΠΎΠΏΡΡ ΡΡΠ°ΡΡΠΈΡ Π² ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΠΊΡΠΈΡΡ
Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΡ
ΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΡΡΡΠ±ΠΎΠ»ΡΠ½ΡΡ
ΠΊΠ»ΡΠ±ΠΎΠ², Π΄Π΅ΡΡΠΊΠΎ-ΡΠ½ΠΎΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠΌΠ°Π½Π΄, ΠΌΠΈΡΠΎΠ²ΡΡ
Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΉ ΡΡΡΠ±ΠΎΠ»Π°. ΠΡΡΠ²Π»Π΅Π½ΠΎ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΡΡΠ±ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠ°ΠΊ Π² ΠΌΠΈΡΠΎΠ²ΠΎΠΌ ΠΌΠ°ΡΡΡΠ°Π±Π΅, ΡΠ°ΠΊ ΠΈ Π½Π° Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅. ΠΠΊΠΎΠ»ΠΎΠ³ΠΈΠ·Π°ΡΠΈΡ βΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ Π² Π»ΡΠ±ΠΎΠΉ ΡΡΠ΅ΡΠ΅. Π‘ΡΠ°ΡΡ ΡΠ°ΠΊΠΎΠΌΡ ΠΏΡΠΎΡΠ΅ΡΡΡ Π² ΡΡΡΠ±ΠΎΠ»Π΅ Π½Π°Π΄ΠΎ Π΄Π°Π²Π°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΡΡΠ±ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π°.The most relevant topic of our time is environmental protection. What place is given to sport in solving environmental problems? The article is devoted to the search for an answer to this question. The experience of participation in environmental actions of foreign and Russian football clubs, youth teams, world football associations was studied. The absence of a common strategy of football greening both on a global scale and at the national level has been revealed. Greening is a consistent and longβterm process in any field. The start of such a process in football should be given, starting with the formation of the ecological program of the football community
ΠΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° Π·Π°Π΄Π°ΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π°Π²ΡΠΎΠ½ΠΎΠΌΠ½ΡΠΌ Π½Π°Π΄Π²ΠΎΠ΄Π½ΡΠΌ ΡΡΠ΄Π½ΠΎΠΌ Π΄Π»Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΡΠ΅ΠΉ
Development of autonomous (uncrewed) surface vessels for commercial, industrial, and auxiliary fleet is currently one of the most rapidly advancing transport technologies. The key issue of its implementation is creation of an integrated control system (ICS) of safe navigation of uncrewed surface vehicles (USV) in automatic mode along the route. Then, it is necessary to keep in mind the features of maritime navigation and inland navigation.A performed analytical review of basic heading and speed control algorithms allowed revealing the main problems referring to development of an integrated control system for an USV. The statement of the control problem is followed by enlisting directions for further research.ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π±ΡΡΠ½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π°Π²ΡΠΎΠ½ΠΎΠΌΠ½ΡΡ
(Π±Π΅Π·ΡΠΊΠΈΠΏΠ°ΠΆΠ½ΡΡ
) Π½Π°Π΄Π²ΠΎΠ΄Π½ΡΡ
ΡΡΠ΄ΠΎΠ² Π΄Π»Ρ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡΠ°. ΠΠ»ΡΡΠ΅Π²ΡΠΌ Π²ΠΎΠΏΡΠΎΡΠΎΠΌ Π΅Ρ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (ΠΠ‘Π£) Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΠΠ‘ Π² Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΠΎ ΠΌΠ°ΡΡΡΡΡΡ. ΠΡΠΈ ΡΡΠΎΠΌ Π½ΡΠΆΠ½ΠΎ ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΡ ΠΌΠΎΡΡΠΊΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°ΡΠΈΠΈ ΠΈ ΠΏΠ»Π°Π²Π°Π½ΠΈΡ ΠΏΠΎ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌ Π²ΠΎΠ΄Π½ΡΠΌ ΠΏΡΡΡΠΌ.ΠΡΠΎΠ²Π΅Π΄ΡΠ½ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π±Π°Π·ΠΎΠ²ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΎ ΠΊΡΡΡΡ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π±Π΅Π·ΡΠΊΠΈΠΏΠ°ΠΆΠ½ΡΠΌ ΡΡΠ΄Π½ΠΎΠΌ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π° ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° Π·Π°Π΄Π°ΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ
Complex formation, chemical exchange, species structure, and stereoselective effects in the copper(II)- L/DL-histidine systems
The formation of copper(ii) complexes with l- and dl-histidine (HisH) has been studied by means of pH-potentiometry and spectrophotometry over a wide range of pH (2-14), ligand-to-metal ratio (1:1-15:1), and temperature (15-55Β°C) in aqueous solutions with 1.0 mol dm -3 KNO 3 as background. Formation constants and spectral characteristics of 13 complex types were found. Fine stereoselective effects have been detected with preferential coordination of two ligands with identical configuration in Cu(His)(HisH) + and opposite configuration in Cu(His) 2. The stereoselective effect for Cu(His)(HisH) + is explained by hydrogen bond formation between the carboxyl and imidazolyl groups of neighboring ligands at cis-arrangement of amino groups (3N eq-form). The opposite sign of stereoselective effect for Cu(His) 2 is derived from favourable axial coordination of the imidazole group in meso-form with cis-structure (3N eqN ax-form). A significant tetrahedral distortion was revealed for the first time in the prevalent cis-isomer of the Cu(l-His) 2 4N eq-form. These findings were confirmed by EPR data and DFT computations at the B3LYP/TZVP level. The prevalence of cis-isomers for these complexes has been assigned to the rather strong trans effect of the amino groups. The structures of other detected complexes are briefly discussed on the basis of spectroscopic data. Chemical exchange reactions in the copper(ii)- l/dl-hishidine systems have been investigated by the NMR relaxation of water protons. A unique proton exchange reaction with short-term proton dissociation from the coordinated imidazolyl group catalyzed by hydroxide ion was characterised for the first time. The discovered enantioselective effects in the ligand exchange reactions between Cu(His) 2 and HisH or His - species were attributed to the associative substitution mechanism. Β© 2012 The Royal Society of Chemistry
ΠΠ°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΌΡΠ½ Π² ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΡ ΠΊΠΎΡΠΈΠ°Π½Π΄ΡΠ°
Relevance and methods. In some Umbelliferae crops, the ratio of the parameters of the seed (the relative length of the embryo) has a significant effect on the ability of seeds to germinate. We studied 10 coriander samples, which showed significant differences in the degree of severity of the main morphological parameters, including the length of the seed, endosperm and embryo.Results. The indicators of the hybrid 5/19 and the variety Stimul significantly exceeded the average value of the population in the length of the seed at 1%, and the sample of the local population from Azerbaijan had the lowest indicator at the 5% level of significance. The endosperm length of the hybrid 5/19, the variety Stimul and the sample of the local population of Egypt exceeded the level of the indicator on average in the experiment. According to the length of the embryo, the Nectar variety, hybrid 5/19 and samples from Egypt and Azerbaijan were at the level of the average value for the experiment. The largest embryo (1.063Β±0.04) was distinguished by the Commander variety. Four samples significantly exceeded, and the hybrid 11/19 were lower than the average value. Depending on the variety, the coefficient of variation of indicators varied for the length of the embryo (13.9-19.1%), the length of the endosperm (16.4-20.4%) and the length of the seed (15.7-22.1%). The maximum value (0.377) of the IZ/E index, which characterizes the ratio of the size of the embryo and endosperm, was observed in the Commander variety. A close correlation was found between the length of the seed and the length of the endosperm, the correlation coefficient varied from r=0.640 in the Stimul variety to r=0.981 in a sample of the local population of Egypt. A weak or medium correlation was observed between the length of the embryo on the one hand and the length of the endosperm (0.026-0.393) and the seed (0.090 β -0.132) on the other. For the IE/S index, which characterizes the ratio of endosperm size to seed size, the limits (0.893-0.988) of variability were significantly lower. The maximum index (0.988) was found in a sample from Egypt.Β ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π£ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
Π·ΠΎΠ½ΡΠΈΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π΄Π»ΠΈΠ½Π° Π·Π°ΡΠΎΠ΄ΡΡΠ° ΠΌΠΎΠ³ΡΡ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠ΅ΠΌΡΠ½ ΠΊ ΠΏΡΠΎΡΠ°ΡΡΠ°Π½ΠΈΡ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π² ΡΠΊΡΡΡΠ΅ΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ. ΠΠ·ΡΡΠ΅Π½ΠΎ 10 ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠΎΡΠΈΠ°Π½Π΄ΡΠ°, Ρ ΠΊΠΎΡΠΎΡΡΡ
Π²ΡΡΠ²Π»Π΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ ΠΏΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π΄Π»ΠΈΠ½Π΅ ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ Π·Π°ΡΠΎΠ΄ΡΡΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΈΠ±ΡΠΈΠ΄ 5/19 ΠΈ ΡΠΎΡΡ Π‘ΡΠΈΠΌΡΠ» ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ Π€ΠΠ¦Π ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΈ ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ 1%, Π° ΠΎΠ±ΡΠ°Π·Π΅Ρ ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΈΠ· ΠΠ·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π° ΠΈΠΌΠ΅Π» Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΏΡΠΈ 5% ΡΡΠΎΠ²Π½Π΅ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΠΈ. ΠΠΎ Π΄Π»ΠΈΠ½Π΅ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° Π³ΠΈΠ±ΡΠΈΠ΄ 5/19 (Π€ΠΠ¦Π), ΡΠΎΡΡ Π‘ΡΠΈΠΌΡΠ» ΠΈ ΠΎΠ±ΡΠ°Π·Π΅Ρ ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΠ³ΠΈΠΏΡΠ° ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΈ ΡΡΠΎΠ²Π΅Π½Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΏΠΎ ΠΎΠΏΡΡΡ. ΠΠΎ Π΄Π»ΠΈΠ½Π΅ Π·Π°ΡΠΎΠ΄ΡΡΠ° ΡΠΎΡΡ ΠΠ΅ΠΊΡΠ°Ρ, Π³ΠΈΠ±ΡΠΈΠ΄ 5/19 (Π€ΠΠ¦Π) ΠΈ ΠΎΠ±ΡΠ°Π·ΡΡ ΠΈΠ· ΠΠ³ΠΈΠΏΡΠ° ΠΈ ΠΠ·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π° Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΏΡΡΡ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΊΡΡΠΏΠ½ΡΠΌ Π·Π°ΡΠΎΠ΄ΡΡΠ΅ΠΌ (1,063Β±0,04) ΠΎΡΠ»ΠΈΡΠ°Π»ΡΡ ΡΠΎΡΡ ΠΠΎΠΌΠΌΠ°Π½Π΄Π΅Ρ. Π§Π΅ΡΡΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΠ° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΈ, Π° Π³ΠΈΠ±ΡΠΈΠ΄ 11/19 (Π€ΠΠ¦Π) ΡΡΡΡΠΏΠ°Π» ΡΡΠ΅Π΄Π½Π΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΡΡΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΡΡ Π΄Π»Ρ Π΄Π»ΠΈΠ½Ρ Π·Π°ΡΠΎΠ΄ΡΡΠ° (13,9- 19,1%), Π΄Π»ΠΈΠ½Ρ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° (16,4-20,4 %) ΠΈ Π΄Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠ΅Π½ΠΈ (15,7-22,1%). ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ (0,377) ΠΈΠ½Π΄Π΅ΠΊΡΠ° IΠ/Π, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅Ρ Π·Π°ΡΠΎΠ΄ΡΡΠ° ΠΈ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ°, ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ Ρ ΡΠΎΡΡΠ° ΠΠΎΠΌΠΌΠ°Π½Π΄Π΅Ρ. Π’Π΅ΡΠ½Π°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ²ΡΠ·Ρ Π²ΡΡΠ²Π»Π΅Π½Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ°, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΡΡ ΠΎΡ r=0,640 Ρ ΡΠΎΡΡΠ° Π‘ΡΠΈΠΌΡΠ» Π΄ΠΎ r=0,981 Ρ ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΠ³ΠΈΠΏΡΠ°. Π‘Π»Π°Π±Π°Ρ ΠΈΠ»ΠΈ ΡΡΠ΅Π΄Π½ΡΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ Π·Π°ΡΠΎΠ΄ΡΡΠ° Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° (0,026-0,393) ΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΎΡ -0,132 Π΄ΠΎ 0,424) Ρ Π΄ΡΡΠ³ΠΎΠΉ. ΠΠ»Ρ ΠΈΠ½Π΄Π΅ΠΊΡΠ° IΠ/Π‘, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ½Π΄ΠΎΡΠΏΠ΅ΡΠΌΠ° ΠΈ ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΏΡΠ΅Π΄Π΅Π»Ρ (0,893-0,988) Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠ΅, Π΄ΠΎΡΡΠΈΠ³Π°Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° (0,988) Ρ ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΈΠ· ΠΠ³ΠΈΠΏΡΠ°.
Study of structural and dynamic characteristics of copper(ii) amino acid complexes in solutions by combined EPR and NMR relaxation methods
Structural features and dynamical behaviour of the copper(ii) bis-complexes with glycine, d-alanine, d-valine, l-serine, l-aspartic acid, l-glutamic acid, l-lysine, l-proline, and sarcosine were studied by combined EPR and NMR relaxation methods. The cis and trans isomers were unambiguously assigned and characterized by EPR data. It was found that addition of a salt background has an influence on the cis-trans isomer equilibrium in favour of the formation of the cis isomer. By comparison of NMRD, DFT computations, and structural data it was shown that only one water molecule is coordinated in the axial position of these complexes. The increased exchange rates of this molecule found for Cu(l-Asp)2 2-, Cu(l-Glu)2 2-, Cu(l-LysH)2 2+, and Cu(l-Pro)2 were attributed to its pushing out by side chain groups of the ligands. By simulation of NMRD profiles an increase of lifetimes of the copper(ii) 2nd coordination sphere water molecules was revealed in the presence of additional carboxylic, alcoholic, or ammonium groups of the ligands, as well as the pyrrolidine ring of proline. The very short lifetimes of the 2nd coordination sphere water molecules (4-13 ps at 298 K) were explained in terms of the Frank-Wen structural model by the existence of cavities which draw in quickly enough water molecules from the 2nd coordination sphere. Β© 2014 The Partner Organisations
- β¦