3,165 research outputs found

    On structure of effective action in four-dimensional quantum dilaton supergravity

    Get PDF
    A general structure of effective action in new chiral superfield model associated with N=1N=1, D=4D=4 supergravity is investigated. This model corresponds to finite quantum field theory and does not demand the regularization and renormalization at effective action calculation. It is shown that in local approximation the effective action is defined by two objects called general superfield effective lagrangian and chiral superfield effective lagrangian. A proper-time method is generalized for calculation of these two effective lagrangians in superfield manner. Power expansion of the effective action in supercovariant derivatives is formulated and the lower terms of such an expansion are calculated in explicit superfield form

    Covariant Harmonic Supergraphity for N = 2 Super Yang--Mills Theories

    Get PDF
    We review the background field method for general N = 2 super Yang-Mills theories formulated in the N = 2 harmonic superspace. The covariant harmonic supergraph technique is then applied to rigorously prove the N=2 non-renormalization theorem as well as to compute the holomorphic low-energy action for the N = 2 SU(2) pure super Yang-Mills theory and the leading non-holomorphic low-energy correction for N = 4 SU(2) super Yang-Mills theory.Comment: 17 pages, LAMUPHYS LaTeX, no figures; based on talks given by I. Buchbinder and S. Kuzenko at the International Seminar ``Supersymmetries and Quantum Symmetries'', July 1997, Dubna; to be published in the proceeding

    Correlation function of circular Wilson loop with two local operators and conformal invariance

    Full text link
    We consider the correlation function of a circular Wilson loop with two local scalar operators at generic 4-positions in planar N=4 supersymmetric gauge theory. We show that such correlator is fixed by conformal invariance up to a function of 't Hooft coupling and two scalar combinations of the positions invariant under the conformal transformations preserving the circle. We compute this function at leading orders at weak and strong coupling for some simple choices of local BPS operators. We also check that correlators of an infinite line Wilson loop with local operators are the same as those for the circular loop.Comment: 26 pages. v2: reference added, misprints correcte

    Dynamical breaking of gauge symmetry in supersymmetric quantum electrodynamics in three-dimensional spacetime

    Full text link
    The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term AαAαA^{\alpha}A_{\alpha} through Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.Comment: 10 pages, 2 figures, PRD versio

    On the D = 4, N = 2 Non-Renormalization Theorem

    Get PDF
    Using the harmonic superspace background field formulation for general D=4, N=2 super Yang-Mills theories, with matter hypermultiplets in arbitrary representations of the gauge group, we present the first rigorous proof of the N=2 non-renormalization theorem; specifically, the absence of ultraviolet divergences beyond the one-loop level. Another simple consequence of the background field formulation is the absence of the leading non-holomorphic correction to the low-energy effective action at two loops.Comment: 16 pages, LATEX, uses FEYMAN macros, minor change

    The Background Field Method for N = 2 Super Yang-Mills Theories in Harmonic Superspace

    Get PDF
    The background field method for N=2 super Yang-Mills theories in harmonic superspace is developed. The ghost structure of the theory is investigated. It is shown that the ghosts include two fermionic real omega-hypermultiplets (Faddeev-Popov ghosts) and one bosonic real omega-hypermultiplet (Nielsen-Kallosh ghost), all in the adjoint representation of the gauge group. The one-loop effective action is analysed in detail and it is found that its structure is determined only by the ghost corrections in the pure super Yang-Mills theory. As applied to the case of N=4 super Yang-Mills theory, realized in terms of N=2 superfields, the latter result leads to the remarkable conclusion that the one-loop effective action of the theory does not contain quantum corrections depending on the N=2 gauge superfield only. We show that the leading low-energy contribution to the one-loop effective action in the N=2 SU(2) super Yang-Mills theory coincides with Seiberg's perturbative holomorphic effective action.Comment: 17 pages, Late

    Two loop effective kaehler potential of (non-)renormalizable supersymmetric models

    Full text link
    We perform a supergraph computation of the effective Kaehler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kaehler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kaehler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics.Comment: 1+26 pages, LaTeX, 6 figures; a missing diagram added and typos correcte

    Ionization corrections in a multi-phase interstellar medium: Lessons from a z~2 sub-DLA

    Get PDF
    We present a high resolution (FWHM=2.7 km/s), high S/N echelle spectrum for the z = 2.26 QSO J2123-0050 and determine elemental abundances for the z = 2.06 sub-DLA in its line of sight. This high redshift sub-DLA has a complex kinematic structure and harbours detections of neutral (SI, CI), singly (e.g. CII, SII) and multiply ionized (e.g. CIV, SiIV) species as well as molecular H and HD. The plethora of detected transitions in various ionization stages is indicative of a complex multi-phase structure present in this high redshift galaxy. We demonstrate that the ionization corrections in this sub-DLA are significant (up to ~0.7 dex). For example, if no ionization correction is applied, a super-solar metallicity is derived ([S/H] = +0.36), whereas a single phase ionization correction reduces this to [S/H] = -0.19. The theoretical impact of a multi-phase medium is investigated through Cloudy modelling and it is found that the abundances of Si, S and Fe are always over-estimated (by up to 0.15 dex in our experiments) if a single-phase is assumed. Therefore, although Cloudy models improve estimates of metal column densities, the simplification of a single phase medium leaves a systematic error in the result, so that even ionization-corrected abundances may still be too high. Without ionization corrections the properties of this sub-DLA appear to require extreme scenarios of nucleosynthetic origins. After ionization corrections are applied the ISM of this galaxy appears to be similar to some of the sightlines through the Milky Way.Comment: Accepted for publication in MNRA
    corecore