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Abstract 

We present, in the N= 2, D = 4 harmonic superspace formalism, a general method for constructing the off-shell 
effective action of an N = 2 abelian gauge superfield coupled to matter hypermultiplets. Using manifestly N = 2 
supersymmetric harmonic supergraph techniques, we calculate the low-energy corrections to the renormalized one-loop 
effective action in terms of N = 2 (anti)chiral superfield strengths. For a harmonic gauge prepotential with vanishing 
vacuum expectation value, corresponding to massless hypermultiplets, the only non-trivial radiative corrections to appear are 
non-holomorphic. For a prepotential with non-zero vacuum value, which breaks the U(l)-factor in the N = 2 supersymmetry 
automorphism group and corresponds to massive hypermultiplets, only non-trivial holomorphic [Bcorrections arise at leading 
order. These holomorphic contribution are consistent with Seiberg’s quantum correction to the effective action, while the 
first non-holomorphic contribution in the massless case is the N = 2 supersymmetrization of the Heisenberg-Euler effective 
Lagrangian. 0 1997 Elsevier Science B.V. 

N = 2 supersymmetric field theories possess remarkable properties both at the classical and quantum levels. 
Applications of N = 2 supersymmetry range from super-string theory to topological field theory, supergauge 
models and special geometry (see [ 1 I for a modern review). Although the theory of N = 2 supersymmetry has a 
long history, it still has properties yet to be explored. 

During the last few years, quantum aspects of N = 2 supersymrnetric theories have excited considerable 
interest. This interest was inspired by the seminal papers of Seiberg and Witten [2] where the non-perturbative 
contribution to the low-energy effective action of the N = 2, SU(2) super Yang-Mills model were calculated 
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exactly. The content of Refs. [2] is essentially based on the structure of the low-energy effective action proposed 

in Ref. [3] (see also [4]). 
A key element of the whole approach of [2] is the statement that the leading contribution to the low-energy 

effective action of N = 2 super Yang-Mills theory is represented by a single holomorphic function of the N = 2 
chiral superfield strength W. A detailed investigation of this statement, and the calculation of non-leading 
contributions to the low-energy effective action, have been undertaken in recent papers [5-91 3. 

As is well known, an adequate description of quantum N-extended supersymmetric field theories can be 
achieved in terms of unconstrained superfields given on an appropriate N-extended superspace. However, the 
analysis of Refs. [5-91, as well as the main statement of Ref. [3], were based on the formulation of N = 2 
supersymmetric theories in terms of N = 1 superfields. Such formulations lack manifest N = 2 supersymmetry 
which, in general, gets closed partly on-shell. Since these formulations do not keep N = 2 supersymmetry 
manifest at all stages of the computation, they can lead to a number of obstacles. In this respect, the problem of 
calculating the effective action of N = 2 theories in terms of unconstrained N = 2 superfields appears to be of 
importance. 

N = 2 supersymmetric theories can be formulated in standard N = 2 superspace in terms of constrained 
superfields. For a special N = 2 matter multiplet (the so called relaxed hypermultiplet [ll]) and the gauge 
multiplet the corresponding constraints were solved in [ 11,121. However, these formulations look extremely 
complicated when the interaction is switched on and, in our opinion, are very difficult to use for the 
computation of the effective action. 

A constructive and elegant approach to the description of theories with extended supersymmetry is based on 
the concept of harmonic superspace [ 13-161. It allows one to investigate different extended supersymmetric 
models naturally and simply. As to N = 2 models, their formulation using the harmonic superspace approach 
looks quite transparent. 

In this letter we begin an investigation of the quantum aspects of N = 2, D = 4 supersymmetric field theories 
using the harmonic superspace approach. We study the low-energy structure of the Wilsonian effective action of 
an abelian gauge superfield coupled to matter super-fields. 

Because of N = 2 supersymmetry and gauge invariance, which the harmonic superspace approach allows us 
to keep manifest, the effective action of the Maxwell multiplet is a non-local functional of the (anti)chiral 
superfield strengths W and @ only. In the low-energy limit, when only the leading contribution in the 
space-time derivatives survives, we are left with a local effective superpotential depending only on W and 9. 

The Fayet-Sohnius massless hypermultiplet is described in harmonic superspace by an unconstrained analytic 
superfield q+(L,,u+,u-) [13], where CAM = (x,“,O’~,~Z) are the coordinates of an analytic subspace of the 
whole N = 2, D = 4 harmonic superspace, 6,’ = O~U+, @ = 8:~:) Ijz$ll ESU(~), i = 1,2. The most charac- 
teristic feature of the superfield q+ is an infinite number of auxiliary fields coming from the harmonic 
expansions in u+ , u; . This is the only possible way to describe the off-shell massless hypermultiplet within the 
framework of N = 2 supersymmetry without central charges. The qf multiplet is universal, all known N = 2 
matter off-shell multiplets with finite numbers of auxiliary fields (e.g., the relaxed hypermultiplet [ll]) are 
related to it via appropriate duality transformations [17]. 

The classical action for the hypermultiplet interacting with an abelian gauge superfield Vf+( &,u+,u-> is 
given by 

s[ “4 +,qt,v++] = /dci-“)du; + v++q+. 

3 As was noted in [lo], such non-leading contributions are described in terms of a real function of W and its conjugate G. 
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Here dJle4) = d4X,d28+d28+, 

Vff=D+‘+ iv++ , 
(2) 

*+ 
and operation v called ‘smile’ denotes the analyticity-preserving conjugation [13] ( i + E 4 >. The explicit 
form of the operator D++ in the analytic basis, as well as all relevant notation, can be found in Ref. [13]. 

The S[ i +,q+,V++] enters as part of the action of N = 2 supersymmetric electrodynamics 

s SED = i /d4.rd48 W2 + fd&$-4)du G ’ (D+++ iV++)q+. (3) 
The chiral gauge invariant strength W and its conjugate w are expressed via Vf+ by the relation [13,14,16] 

W= -/du(D-)‘V++(x,B,u), @= -/d~(D-)2V++(x,e,u) (4) 

with 0,’ = DLui’, E&* = 5; u: the spinor covariant derivatives. For later use, we singled out in Vff a 
background part Vlf and write V++ = Vt++ VT’. Vz+ possesses a constant strength W, and can be chosen to 
be of the form 

-(~+)2~o-(~+)2Wo, W,=const. (5) 

For V:+= 0, the hypermultiplets are massless. What happens when VJ+ # O? Whatever the origin of a 

non-vanishing Vl+ (and W,> may be, such a V,’ breaks the U(l)-factor in the N = 2 superalgebra 

automorphism group U(2) and gives q+ a mass m = ( W, 1 via generating a central charge proportional to the 

generator of gauge U(1) symmetry 4. 
Thus, this theory possesses two different phases associated with two physically different choices; Vlf = 0 

and T’of+ # 0. Because of the Bianchi identity D”‘DiW = 5; o”ljw, we have 

jd4Xd40( W, + Wo)2 = /d4nd48 W,2 s 

Thus? N = 2 Maxwell theory can be treated either as a theory of massless superfields q+, G + coupled to gauge 

superfield VC’ (the first phase), or as a theory of massive qf, < + coupled to VT’ (the second phase). We will 
consider both phases. 

Note that an abelian theory with W, = const naturally arises as an effective theory describing the spontaneous 
symmetry breaking phase in N = 2 super Yang-Mills theory. In this case the classical potential vanishes at 
non-zero vacuum values of the scalar components of the gauge multiplet and only a U(l)-factor of the gauge 
group survives. In the superfield language, such a situation just corresponds to W, = const. (see Ref. [25] for a 
generic discussion of spontaneous symmetry breakdown in N = 2 super Yang-Mills theory). 

The effective action r[ V++] of the theory (I) is defined by the path integral 

eiT[V++] = 
/ 

9 i +sq+eiS[4 + ,4+ ,V++] 
(7) 

and can be formally written as 

T[V++] =iTrhrV++ . (8) 

We will calculate T[V++] starting with this relation, using a suitable definition of the right-hand side of (8). 

4 The fact that the hypermultiplet becomes massive follows from the dynamical equation CD+’ +iVl+ >qf = 0 which implies 

(0 + m2)q+ = 0, where m = IWO/. 
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Another, basically equivalent version of the harmonic superspace description of the massless hypermultiplet 
makes use of an unconstrained analytic superfield w( &,u+,u-> [13]. It should be taken complex when coupled 
to the Maxwell gauge superfield. We now show that the effective action for the o version of the hypermultiplet 
can be computed directly from the qf effective action I'[Vff I. The classical action for o interacting with the 
abelian V+’ is given by 

s[ t;,fX,v++ = 1 J dl;-4)dUV++ ; V++ o 

where 

V++o=(D+++iV++)w, 

+f V & = (D++-_ iv++) G. 

The effective action IJ,[V+‘] of the theory (9) is defined by 

(9) 

(10) 

(II) 

eir,[V++l = 
I 

9 GsWeiS[ w ,o,V ++1 

and can formally be written as 

T,[V++] = iTrln( Vi-‘)“. 

Eqs. (8) and (13) lead to the formal relation 

Tw[v++] = 2r[V++] 

which, of course, needs justification. 

(12) 

(13) 

(14) 

In order to make the above considerations more precise, we consider a theory of two hypermultiplets qi 
(i = 1,2) with the action 

x “+i 
sq [ 

,q+,V++ = d&4)du q 1 / ” +iv+.tqt 
and introduce the corresponding effective action p[ Vf+ ] defined by 

(15) 
,iP[V++] = 

/ 

g G +Cgq+eif[ G +‘,q: .V++l = e2iW++l 
1 

Let us also consider the following change of variables 

” fi ” ++ 
4 =Ik f’w+u-‘f , q+ =u+w+uy (17) 

with some analytic superfields ff+, 7 ++ . Transformation (17) has been introduced in Ref. [ 151 in order to 
prove the classical equivalence of the models (15) and (10) at V++ = 0 5. The right-hand sides in (17) do not 
contain any dependence on V” and, hence, the corresponding Jacobian is a constant. Now, putting (17) in path 

integral (16), and eliminating the auxiliary super-fields S’ and 7 ++, one readily finds 

F[v++] =r,[v++]. (18) 

Comparing this with (16) leads to (14). Thus to find the effective action of the theory (9), it is sufficient to 
calculate the effective action T[V++] for the theory (1) 

5 To avoid confusion, we point out that the single qf can also be traded for a single real w hypermultiplet via EQ. (17) with 

4 +i = E%Jk+. In such a o representation, however, the coupling to V++ contains explicit harmonics, which is inconvenient for practical 
calculations. 
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For the correct definition of the effective action r[V++], we consider the GI 2) of 
operator V+ + 

V;+G”,“(1,2) = Si”91,2) (19) 

where 12 = (J’1,2A,u1,J and 8, (371)(1,2> is the appropriate analytic subspace &function [14]. Let us introduce an 
analytic superkernel Q (3~1’(1,2> which contains all information about the interaction and is defined by the rule 

Gr*‘)( 1,2) = j-df;a-4)dU3G(1.1)( 1,3)QC3,“(3,2) (20) 

with Gr,‘) the Greens function of the free hypermultiplet [14] 

G&171)(1,2)=(;+(l)q+(2))= --&D~)4(D;)484(~r-~~)S8(~l_81) 
1 

(,A+,# * 
(21) 

Then we have 

Q(‘,‘)(1,2) = 829’)(1,2) +iV++(l)G$1X’)(1,2). 

With the use of Q (3,1)( 1 2) effective action r [ Vf + I can be defined in the form 6 , , 

r[V++] = iTrhrQC3”). 

Here the operation Tr is understood in the sense 

(22) 

(23) 

TrF404-4 = 
/ 

d5,-4)dU~-(q,4-g)(1,2) 
(24) 

for any analytic superkernel F (q*4-q)(l 2) Eqs. (22)-(24) show that the effective action (23) is well defined , . 
within perturbation theory. 

We can write the effective action r[V”] as a perturbation series in powers of the interaction as 

l?[V++] = nfll?n[V++] = i2 . - fi3 . . + 

. 
+ fi4 . . 

(++Yn+I : l : + 
+ . . . + -1 . . . 

n . . . 

(25) 

where the n-th term T,[V++] is depicted by a supergraph with IZ external V++ -legs. 
Eq. (23) leads to the following structure for r,[ V++l 

&[V”] = i (-l)nfl Tr(iVf+G&l*‘))n. 
n (26) 

Taking into account the antisymmetry of G, (‘J) [14], one observes that all the coefficients r, with odd II are 
vanishing. Therefore, only the supergraphs with even numbers of legs contribute to the effective action. 
T[V++] can be shown to be gauge invariant. Hence, each coefficient r, (26) can, in fact, only depend on the 
strengths W, w in the low-energy limit. 

6 From a formal point of view, this definition means that T[V++ ] = -iTrln(G(‘~‘)/G, (I,‘)) where we have used the fact that the 
effective action is always defined up to a constant. 
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As was previously pointed out, the theory under consideration possesses two different phases corresponding 
to the cases V,++ = 0 and Vof+ # 0. First let us discuss the V,+ = 0 case. 

We begin with a direct calculation of the term T,[V++] which, in the central basis, reads 

l-‘JV++] = - ; jd4X,d48:dU,d4X,d48tdUZ 

x~(D;)4(D:)4[~4(x,-r,)S8(e,- e,>] V++(xl,e,,u,)V++(x,,8,,u,) 
(27) 

2 (u:zd;)“( 242”u:>’ 

where the explicit form of G$‘,‘) (20) has been used. ’ Let us restore the full Grassmann measure d88,d88, [15], 
make use of the relation between V++ and VP- [16] 

v--( x,O,u) = jdu, ‘;:‘:B;:‘) 9 

1 

and perform the Fourier transform. As a result one obtains 

1 
r&7++] = _t--- j 

2 (2%-)8 
d4Pd8eduV++(P,e,u)v--( -P,e,+q P) 

Wd = j q2(;yp)2 . 
Regularizing r [ V++ ] by the dimensional regultization prescription 

with D = 4 - 2 E and or. the normalization parameter, and subtracting the ultraviolet divergence 

I&,[V++] = & jd4Xd48W2 

one ends up with the two-leg correction to the renormalized effective action &[ V++ ] 

r,,[V++] = - & jd4xd4eIVln -s W. 
( 1 

(28) 

(29) 

(31) 

(32) 

An analogous quantum correction has been found in N= 1 super Yang-Mills theory in [19]. Eq. (32) can be 
treated as the leading term in the effective action for a weak but rapidly varying gauge superfield. However, for 
this correction is problematical in the low-energy limit where p2 + 0. To overcome this, we introduce an 
infrared cutoff A2 using the rule 

II,,(O) = p2’ jA2y = i77’( f + hr$) . (33) 

7 We use the following notation: (II*>’ =$D* “D,‘, (E’>2 =fE$s*’ and (D+j4 =(D+j2(o+j2. 
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Then, the low-energy correction reads 

&[ V++] = - -&ln$~d4xd40V2. 

Eq. (31) constitutes the only divergence in the theory under consideration. All contributions T,[V++] for n > 2 
are automatically ultraviolet-finite. Clearly, Eq. (34) corresponds to a holomorphic contribution to the effective 

action. 
The next stage is the calculation of the four-leg contribution r,[ V++ ] in the low-energy limit. We start with 

general relation (26) for n = 4 and restore the full Grassmann measure d%. As the result, we get 

q[ V++] = - + jd”x,d’ x,d4x,d4x,dds,d88,du,du,du,du,$( D;)4( D2+)4 
1 

X[64(x1 -“2)s”(e, - e,>] -&84(x, -x4) 

i i 

x+(D:)‘(D;)l[s4( x3 -X4)S8(e, - e2>] 

3 

+4(x,-n,) 

x V’“( +e+~)v++( X2,e2,U2)V++( x3>e3,u3)v++( x4~e4,u4) 

(u:u;)“( *;u:)“( u:z4q+)3( z&q)’ 
(35) 

Here we have used the explicit form of G, (‘J) (20) and integrated over two Grassmann coordinates. 
After performing the Fourier transformation of &function, the previous expression can be rewritten in the 

form 

r,[ V++] = - $ /d4x,d4x,d4x3d4x4d88,d80Zd~id~2d~3dUq 
d4p,d4p,d4p,d4p, 
(27YP?P,2P32P42 

exp(iP,( x1 -x2)) 

X exp(ip2( x2 - x3))exp(ip3( x3 -X4))exp(ip4(x4 -xl)) 

x68(6)1 - e2)v++( ~,~~1~~*)V++(~2~~2,~2)[~~(-P,)14[~:(P1)14 

X 
[v++(x3~B2~U3)V++(X4.el~U4)[13:(P3)]4[~~(-P3)]4S8te, - ‘,)I 

( u:z42f)3( .+q)‘( u;uq+)3( r&q3 
(36) 

We have omitted the terms obtained by the action of [~:(p,)l~ on V+f~x,,Bl,ul) and [~:(--p,)l~ on 
Vf + ( .x2,Bz,u2) because they do not contribute in the local limit. 

Our aim is to find the local low-energy contribution to r,[ V++ ]. Due to the supergauge invariance, it should 
be composed only from the superfield strengths W and w at the same point (x,0>. This means that we are led to 
consider IV, w as independent functional arguments of r,[ V”], neglecting all space-time derivatives of these 
superfields. Taking into account the relation between W and V++, Eq. (4), there is only one possible way to 
convert all V++ into the superfield strengths. It is necessary to distribute eight spinor derivatives among the 
external lines so as to have an equal number of the derivatives D+ and 5’ acting on the Grassmann 
a-function; otherwise the result will be zero. It is evident that we get both W and w in this manner and, hence, a 
non-holomorphic contribution. 

Let us briefly discuss the possibility to obtain holomorphic contributions. Such a contribution is defined by 
an integral over the chiral subspace which can be obtained by the rule Jd4xd% N /d4xd4004. Then we could 
throw only four spinor derivatives on the external legs and distribute the remainder among the &functions. The 
total number of these derivatives formally suffices to obtain a non-zero result. Unfortunately, all derivatives 
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acting on the external legs should have the same chirality in order to finally get the expression depending only 
on W. This means that the numbers of D’ ‘s and B+ ‘s acting on the &function do not match each other and 
the final result must vanish. Thus, there is no holomorphic contribution to &[V++]. 

The only part of T,[V++] which contains eight spinor derivatives on external lines can be singled out as 
follows: 

Xexp(ip,( x1 - x2))exp(ip2( x2 - x3))exp(ip3( x3 - x4))exp(ip4(x4 -x~)> 

x6"(0,- ~,)[D:(P~)]~[D:(-P~]~~~(V-~) 

(37) 

After performing the D-algebra and integrating over 8, one gets in the low-energy limit 

r,[v++] = - ~j~~~jd4xd8~jd~~(D~,;,++(x,~,~~)jd~2(~~i’V++(x~~~~~) 

Xjdu3(&)‘V++( x,&u,)jdu,( D$V++( x,O,u,), (38) 

with A2 the infrared cutoff. Now let us use the relations (4) which allow us to represent Eq. (38) in a manifestly 
gauge invariant form 

1 
G[V++] = 

(16~)~A~ j 
d4xd80W2W2. 

This result has a simple physical interpretation. Let us keep as non-vanishing only the electromagnetic field 
components Fpy of W and w. Then r,[V++] turns into 

&[V++] = ____ 
(64:)’ i 

jd’x( ( FpYFlLY)2 + ( Fpy +‘)2} t 

where FELv is the dual of Fp,,. Eq. (40) is, in fact, the first time a non-linear quantum correction to the 
electromagnetic Lagrangian has been presented for the N = 2 theories under consideration. This type of 
correction was originally discussed by Heisenberg and Euler (see, for instance, [20]). Therefore, r,[ Vf + ] can be 
interpreted as the N = 2 supersymmetric generalization of Heisenberg-Euler Lagrangian. By construction, 
r,[ V++] is given in a manifestly N = 2 supersymmetric and gauge covariant form. 

It is worth noticing (see [5,10]) that the functional /d4xd80W2W 2 rewritten in terms of N = 1 superfields 
contains a contribution with four spinor derivatives of chiral matter superfields. This kind of one-loop quantum 
correction to the effective action has been found in Ref. [21] and called the effective potential of auxiliary fields 
(see also [6]). 

The above consideration can be generalized to give the 2n-leg contribution I’,,[V++], for n = 3,4,. . . , in the 
low-energy approximation 

&,,[V++] N jd4xd8tI n> 1. (41) 
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Eqs. (34) and (41) specify the general form of low-energy effective action. We see that the effective action has 
both holomorphic and non-holomorphic parts. The holomorphic contribution is simple and stipulated by the 
ultraviolet divergence. The non-holomorphic contribution has a very special structure; i.e. it depends on W and 
w only via the combination %V. 

To fix the dependence on the arbitrary parameter p we should, as usual, impose some renormalization 
conditions. The infrared cutoff A, unlike p, is a physical parameter which, in accordance with the status of the 
Wilsonian effective action [24], defines the physical scale where we study the low energy phenomena. 

We now turn to the calculation of the low-energy effective action for the case when VT+ # 0. We start from 

the four-leg contribution (36). In order to obtain a holomorphic contribution one should throw two derivatives 
Df and two derivatives 0’ on the external lines. The only term which gives a contribution in the local limit is 

lJv++] - - $, d4x,d4x,d4x,d4x4d88,d8t9~duIdu~du~du~ 
d4p,d4p,d4p3d4p, 
(2~Y”PfP;P:P: 

X exp(ipl( x1 - x,))exp(ip,( x2 - x,))exp(ip3( x3 -x4))exP(iP4(x4 -XI)> 

x6*(8, - B,)[@( -P~)]~[D~(P~)]~[D~(P~)]~[D~~(--P~)~~~~(~I - 0~) 

(42) 
The expression we are interested in can be picked out from (42). Using the fact that V++ = Vi+ + VT’ with 

V+’ given by 

or” T,[V”] 

Eq. (5) we can conclude that the local holomorphic contribution comes from the following piece 

q[ V++] = - + jd4x,d4x2d4x3d4x4d88,d802dUldU2dU3dUq 
d4p,d4p,d4p,d4p, 
(2~YP;P;P;P: 

Xexp(ip,(x, -x2))exp(ip2(x2 -x3))exp(iP3(x3 -x4))exP(iP4(x4 -XI>> 

X 
S8(e, - e,)[~:(-p,)]2[D:(p~)]2[D:(p3)14[04+(_P3)14~8(~~ -02) 

(qu:)‘( u;u:)3( &zg3( r&y3 

xv++(x,,e,,~,)V++(x29e2~~2) (~:~:)‘W,[~:(~,)]~V:f(x,~~,,u,) 1 

+(uqfu:)2W~[D:(-p1)]2v:+(x3,e2,uj) +(u;u:)2wo(~q+u:)2Wo . I 

In the low-energy limit Eq. (43) gives rise to the gauge invariant contribution 

q[V++] = - f j (2i;p6 jd4xd4eW3W, + f j (2t;p6 jd4xd4f3W2W,W, + hqc., 

where the identity 

jd4xd88duV++V--K(W) = jd4xd4eWZK(W) 

for arbitrary an holomorphic function K(W) has been used. 
Analogously, in the 2n-th order we have 

(43) 

(44) 

(45) 

Tz,[V++] = - & j (2a;;2m+2 jd4xd4eWn+ri&‘-’ 
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+’ d4p 
4n / (2~)~p2~+ 2 

Jd4xd4BW2(i&WO)n-1 + hc. 

To calculate the total one-loop effective action we should sum up all contributions (46). This leads to the 
expression 

d4xd40g /ilp’ln(l + F 1 

1 W2 
-- 

64rr2 / 
d4xd4&--- 

W&Cl 
f h.c. (47) 

After renormalization and doing the momentum integral, one gets 

T’[ V++] = /d4xd4tP( W) + h.c., (48) 

8(W)=&W2 I-lnWZ . 
( I PZ 

(49) 

Here all the dependence on W,, w, has been absorbed in the normalization point p. 
Eqs. (48) and (49) are two of the main results of our paper. We see that the massive branch of the theory, 

unlike the massless one, allows one to obtain non-trivial holomorphic contribution to the low-energy effective 
action. This holomorphic contribution does not depend on the infrared cutoff and, hence, it is automatically 
infrared-finite. To fix the ultraviolet normalization point we should impose, as usual, some renormalization 
condition such as 

P-( W)IW2_@ = 0. (50) 
It means that the quantum correction to the classical Lagrangian $ W2 is absent at the scale M. The above 
condition fixes the normalization point Al. and allows us to rewrite Eq. (49) in the form 

.B(W)=--&W’ln$. (51) 
It is interesting to note that Eq. (51) coincides, up to sign and numerical coefficient, with the perturbative 
holomorphic quantum correction to the classical Lagrangian of N = 2 super Yang-Mills theory which was found 
by Seiberg [3], based on non-manifestly N = 2 supersymmetric considerations. The difference in sign and the 
coefficient is due to two reasons. Firstly, we compute the quantum correction coming from matter superfields, 
not gauge ones, which leads to the opposite sign of the p-function. Secondly, the present model describes 
different degrees of freedom as compared to the N = 2 super Yang-Mills model. 

Let us summarize the results. We have developed a general approach to the problem of computing the 
effective action of the N = 2, D = 4 abelian gauge superfield coupled to massless and massive off-shell 
hypermultiplets (with the mass arising as an effect of the non-zero vacuum expectation value of the gauge 
superfield). This approach is based on the formulation of N = 2 supersymmetric theories in harmonic 
superspace and guarantees manifest N = 2 supersymmetry at each step of the computation. We have demon- 
strated that the N = 2 supergraph techniques of Refs. [14,15] are suitable for the investigation of a broad class of 
N = 2 supersymmetric theories in the same way, and with the same degree of efficiency, as the well known 
N = 1 supergraph techniques (see, for instance, Refs. [22,23]). 

Theory (1) possesses two different phases corresponding to massless and massive hypermultiplets. The 
renormalized Wilsonian effective action of the Maxwell multiplet was considered for both phases of the theory. 
We calculated its explicit form, which depends only on the superfield strengths W and w, in the low-energy 
limit where all derivatives on the superfield strengths can be neglected. In the massless case, we found that the 
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effective action contains the trivial holomorphic contribution which is stipulated by the ultraviolet divergence 

and the non-trivial non-holomorphic contributions (39) and (41). These non-holomorphic contributions are 
automatically ultraviolet-finite and depend on an infrared cutoff A defining a physical scale in the theory under 
consideration. The simplest non-holomorphic contribution (39) leads to the N = 2 supersymmetric extension of 
the well-known Heisenberg-Euler lagrangian. The massive branch occurs when the hypermultiplet is coupled to 
a background gauge superfield VJ’ with the constant strength IV, f 0. Vlf can be associated with the 
breakdown of the U(1) factor in the automorphism group U(1) X SU(2) of N = 2 supersymmetry. In the 
massive case, the structure of the effective action is changed drastically as compared to the massless case. Here 
the effective action contains non-trivial holomorphic contributions. Moreover, their structure is analogous to the 
low-energy perturbative effective action for N = 2 super Yang-Mills theory obtained by Seiberg by integrating 

the R-anomaly [31. 
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