783 research outputs found

    Transient interference of transmission and incidence

    Get PDF
    Due to a transient quantum interference during a wavepacket collision with a potential barrier, a particular momentum, that depends on the potential parameters but is close to the initial average momentum, becomes suppressed. The hole left pushes the momentum distribution outwards leading to a significant constructive enhancement of lower and higher momenta. This is explained in the momentum complex-plane language in terms of a saddle point and two contiguous ``structural'' poles, which are not associated with resonances but with incident and transmitted components of the wavefunction.Comment: 4 pages of text, 6 postscript figures, revte

    Explicit solution for a Gaussian wave packet impinging on a square barrier

    Get PDF
    The collision of a quantum Gaussian wave packet with a square barrier is solved explicitly in terms of known functions. The obtained formula is suitable for performing fast calculations or asymptotic analysis. It also provides physical insight since the description of different regimes and collision phenomena typically requires only some of the terms.Comment: To be published in J. Phys.

    Time scale of forerunners in quantum tunneling

    Full text link
    The forerunners preceding the main tunneling signal of the wave created by a source with a sharp onset or by a quantum shutter, have been generally associated with over-the-barrier (non-tunneling) components. We demonstrate that, while this association is true for distances which are larger than the penetration lenght, for smaller distances the forerunner is dominated by under-the-barrier components. We find that its characteristic arrival time is inversely proportional to the difference between the barrier energy and the incidence energy, a tunneling time scale different from both the phase time and the B\"uttiker-Landauer (BL) time.Comment: Revtex4, 14 eps figure

    Tunneling dynamics in relativistic and nonrelativistic wave equations

    Full text link
    We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cut-off. A scaling of position and time reduces to a single case all the (below cut-off) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ``shallow'' and ``deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or B\"uttiker-Landauer) time "tau". The corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle point contributions, and may be characterized by two times for the arrival of the maxima of lower and upper envelops. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation

    Stereodynamical studies of velocity aligned photofragments

    Get PDF
    The state resolved stereodynamics of bimolecular reactions can be probed using velocity aligned photofragments as reagents, and polarised, Doppler resolved laser detection techniques for the products. The new strategy and its application to the reaction O(1D) + N2O→ NO + NO are outlined

    Matter-wave diffraction in time with a linear potential

    Full text link
    Diffraction in time of matter waves incident on a shutter which is removed at time t=0t=0 is studied in the presence of a linear potential. The solution is also discussed in phase space in terms of the Wigner function. An alternative configuration relevant to current experiments where particles are released from a hard wall trap is also analyzed for single-particle states and for a Tonks-Girardeau gas.Comment: 11 pages, 6 figure
    corecore