203 research outputs found
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism
The cerebellum, or âlittle brainâ, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain
Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span
Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase
ATP11Cshowed a lower rate ofPStranslocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the
mutant mice had an elevated percentage of phosphatidylserineexposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and
the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte
morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated
anemia.This work was supported in part by National Health and Medical Research Council Grant GNT1061288. Supported by National Health and Medical Research Council Career Development
Fellowship GNT1035858 and by the Ramaciotti Foundation
A measurement model for general noise reaction in response to aircraft noise
In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N = 2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.Infrastructures, Systems and ServicesTechnology, Policy and Managemen
Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney
Glutamine, the most abundant amino acid in mammals, is critical for cell and organ functions. Its metabolism depends on the ability of cells to take up or release glutamine by transporters located in the plasma membrane. Several solute carrier (SLC) families transport glutamine, but the SLC38 family has been thought to be mostly responsible for glutamine transport. We demonstrate that despite the large number of glutamine transporters, the loss of Snat3/Slc38a3 glutamine transporter has a major impact on the function of organs expressing it. Snat3 mutant mice were generated by N-ethyl-N-nitrosurea (ENU) mutagenesis and showed stunted growth, altered amino acid levels, hypoglycemia, and died around 20Â days after birth. Hepatic concentrations of glutamine, glutamate, leucine, phenylalanine, and tryptophan were highly reduced paralleled by downregulation of the mTOR pathway possibly linking reduced amino acid availability to impaired growth and glucose homeostasis. Snat3-deficient mice had altered urea levels paralleled by dysregulation of the urea cycle, gluconeogenesis, and glutamine synthesis. Mice were ataxic with higher glutamine but reduced glutamate and gamma-aminobutyric acid (GABA) levels in brain consistent with a major role of Snat3 in the glutamine-glutamate cycle. Renal ammonium excretion was lower, and the expression of enzymes and amino acid transporters involved in ammoniagenesis were altered. Thus, SNAT3 is a glutamine transporter required for amino acid homeostasis and determines critical functions in various organs. Despite the large number of glutamine transporters, loss of Snat3 cannot be compensated, suggesting that this transporter is a major route of glutamine transport in the liver, brain, and kidney
A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments
Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
Understanding governmental activism
This article seeks to understand an understudied phenomenon: governmental players joining forces with non-governmental players in contentious actions against policies they want to prevent or redress. This behaviour, which we call âgovernmental activismâ, problematizes important assumptions in the social movement literature on stateâSMO dichotomies and on seeing âthe stateâ as a homogeneous and unified actor that solely provides the context for SMO activities. Governmental activism also problematizes assumptions on cooperation and ânewâ modes of coordination in the governance literature. To understand governmental activism, we build on the strategic interaction perspective from social movement studies and on third-phase institutionalism from political science. In our analysis, we show the particulars of governmental activism. Our arguments are illustrated by empirical material on a case of municipal amalgamation in the Netherlands
- âŠ