22 research outputs found

    Melghirimyces thermohalophilus sp. nov., a novel thermoactinomycete isolated from an Algerian salt lake

    Get PDF
    A novel filamentous bacterium designated Nari11AT was isolated from soil collected from a salt lake named Chott Melghir located in south east of Algeria. The strain is an aerobic, halophilic, thermotolerant, Gram-positive bacterium, growing at NaCl concentrations between 5 and 20% w/v and temperature and pH ranges between 43-60 °C and 5.0-10.0, respectively. The major fatty acids were isoC15:0, anteisoC15:0 and isoC17:0. The G+C value was 53.4 mol %. LL-diaminopimelic acid was the diamino acid of the peptidoglycan. The major menaquinone was MK-7, but MK-6 and MK-8 were also present in trace amounts. The polar lipids' profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and three unidentified phospholipids. Results of molecular and phenotypic analysis led to the description of the strain as a new member to the genus Melghirimyces, family Thermoactinomycetaceae. Strain Nari11AT shows a 16S rRNA gene sequence similarity of 96.7% with Melghirimyces algeriensis. On the basis of phenotypic, physiological and phylogenetical data the type strain Nari11AT (DSM 45514T =CCUG 60050T) represents a new species for which the name Melghirimyces thermohalophilus sp. nov., is proposed

    Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium

    No full text
    Taking into account their 16S rRNA gene sequences, it appears that Acetomicrobium flavidum and the three species of the genus Anaerobaculum described so far belong to the same phylogenetic clade with high levels (>95 %) of similarity. In this respect, these three Anaerobaculum species should be reclassified within the genus Acetomicrobium, which has priority over the genus Anaerobaculum, which was validated since the genus Acetomicrobium. The DNA G+ C content of Acetomicrobium flavidum is 47.1 mol%, which is of the same order as that of the three Anaerobaculum species. All these bacteria have in common iso-C-15 : 0 as their main fatty acid. Based on further phylogenetic, genetic and chemotaxonomic studies, we propose that Anaerobaculum mobile (=DSM 13181(T) =JCM 12221(T)), Anaerobaculum thermoterrenum (5DSM 13490(T) =5ACM 5076(T)) and Anaerobaculum hydrogeniformans (5DSM 22491(T) 5ATCC BAA-1850(T)) be reclassified as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively. The four bacterial species belong to the phylum Synergistetes

    Reclassification of Acetomicrobium faecale as Caldicoprobacter faecalis comb. nov.

    No full text
    Taking into account its phenotypical and genetic characteristics, Acetomicrobium faecale was first recognized as a member of the genus Acetomicrobium, family Bacteroidaceae, order Bacteroidales, phylum Bacteroidetes, with Acetomicrobium flavidum the type species of the genus. However, it was found that A. faecale had 95.8 %, 97.6 % and 98.4 % similarity, respectively, with Caldicoprobacter guelmensis, Caldicoprobacter algeriensis and Caldicoprobacter oshimai and only 82 % similarity with A. flavidum. The DNA G+C content of A. faecale is 45 mol, which is of the same order as the DNA G+C content of the three strains of species of the genus Caldicoprobacter and its main fatty acid is C-16:0, with its second most prominent fatty acid, iso-C-17:0, also common to strains of species of the genus Caldicoprobacter. On the basis of further phylogenetic, genetic and chemotaxonomic studies, we propose that A. faecale (type strain DSM 20678(T)=JCM 30420(T)) be reclassified as Caldicoprobacter faecalis comb. nov

    Caldicoprobacter guelmensis sp. nov., a thermophilic, anaerobic, xylanolytic bacterium isolated from a hot spring

    No full text
    A hyperthermophilic anaerobic bacterium, designated D2C22(T), was isolated from the hydrothermal hot spring of Guelma in north-east Algeria. The isolate was a Gram-stain-positive, non-sporulating, non-motile rod, appearing singly or in pairs (0.3-0.4x8.0-9.0 mu m). Strain D2C22(T) grew anaerobically at 45-85 degrees C (optimum 65 degrees C), at pH 5-9 (optimum pH 6.8) and with 0-20 g NaCl l(-1). Strain D2C22(T) used glucose, galactose, lactose, fructose, ribose, xylose, arabinose, maltose, cellobiose, mannose, melibiose, sucrose, xylan and pyruvate (only in the presence of yeast extract or biotrypticase) as electron donors. The end products from glucose fermentation were acetate, lactate, CO2 and H-2. Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate and sulfite were not used as electron acceptors. The predominant cellular fatty acids were iso-C-15:0 and iso-C-17:0. The DNA G+C content was 41.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain D2C22(T) was most closely related to Caldicoprobacter oshimai JW/HY-331(T), Caldicoprobacter algeriensis TH7C1(T) and Acetomicrobium faecale DSM 20678(T) (95.5, 95.5 and 95.3% 16S rRNA gene sequence similarity, respectively). Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain D2C22(T) is proposed to be a representative of a novel species of the genus Caldicoprobacter within the order Clostridiales, for which the name Caldicoprobacter guelmensis sp. nov. is proposed. The type strain is D2C22(T) (=DSM 24605(T)=JCM 17646(T))

    Virgibacillus natechei sp nov., a moderately halophilic bacterium isolated from sediment of a saline lake in southwest of Algeria

    No full text
    A novel, Gram-positive, moderately halophilic bacterium, oxidase- and catalase-positive designated FarD(T) was isolated from sediments of a saline lake located in Taghit, 93 km from Bechar, southwest of Algeria. Cells were rod-shaped, endospore forming, and motile. Growth occurred at 15-40 A degrees C (optimum, 35 A degrees C), pH 6.0-12.0 (optimum, 7.0) and in the presence of 1-20 % NaCl (optimum, 10 %). Strain FarD(T) used glucose, mannitol, melibiose, d-mannose, and 5 ketogluconate. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, and three phospholipids; MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C-15:0, anteiso C-17:0, C-20:0, and anteiso C-19:0. The DNA G+C content was 42.1 mol%. Phylogenetic analysis of the small-subunit ribosomal RNA gene sequence indicated that strain FarD(T) had as its closest relative Virgibacillus salinus (similarity of 96.3 %). Based on phenotypic, phylogenetic, and taxonomic characteristics, strain FarD(T) is proposed as a novel species of the genus Virgibacillus within the order Clostridiales, for which the name V. natechei is proposed. The type strain is FarD(T) (=DSM 25609(T) = CCUG 62224(T))

    Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis

    No full text
    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000 U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19 Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70 degrees C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2 mM Ca2+. Its half-life times at 80 and 90 degrees C were 180 and 60 min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove bloodstains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations

    Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities

    No full text
    The current paper reports on the purification of an extracellular thermostable keratinase (KERCA) produced from Caldicoprobacter algeriensis strain TH7C1(T), a thermophilic, anaerobic bacterium isolated from a hydrothermal hot spring in Algeria. The maximum keratinase activity recorded after 24-h of incubation at 50 degrees C was 21000 U/ml. The enzyme was purified by ammonium sulfate precipitation-dialysis and heat treatment (2 h at 50 degrees C) followed by UNO Q-6 FPLC anion exchange chromatography, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 33246.10 Da. The sequence of the 23 N-terminal residues of KERCA showed high homology with those of bacterial keratinases. Optimal activity was achieved at pH 7 and 50 degrees C. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine keratinase family. KERCA displayed higher levels of hydrolysis and catalytic efficiency than keratinase KERQ7 from Bacillus tequilensis strain Q7. These properties make KERCA a potential promising and eco-friendly alternative to the conventional chemicals used for the dehairing of goat, sheep, and bovine hides in the leather processing industry

    Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T)

    No full text
    The present study investigates the purification and biochemical characterization of an extracellular thermostable xylanase (called XYN35) from Caldicoprobacter algeriensis sp. nov., strain TH7C1(T), a thermophilic, anaerobic strain isolated from the hydrothermal hot spring of Guelma (Algeria). The maximum xylanase activity recorded after 24 h of incubation at 70 degrees C and in an optimized medium containing 10 g/L mix birchwood-and oats spelt-xylan was 250 U/mL. The pure protein was obtained after heat treatment (1 h at 70 degrees C), followed by sequential column chromatographies on Sephacryl S-200 gel filtration and Mono-S Sepharose anion-exchange. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis indicated that the purified enzyme is a monomer with a molecular mass of 35,075.10 Da. The results from amino-acid sequence analysis revealed high homology between the 21 NH2-terminal residues of XYN35 and those of bacterial xylanases. The enzyme showed optimum activity at pH 11 and 70 degrees C. While XYN35 was activated by Ca2+, Mn2+, and Mg2+, it was completely inhibited by Hg2+ and Cd2+. The xylanase showed higher specific activity on soluble oat-spelt xylan, followed by beechwood xylan. This enzyme was also noted to obey the Michaelis-Menten kinetics, with Km and kcat values on oat-spelt xylan being 1.33 mg/mL and 400 min(-1), respectively. Thin-layer chromatography soluble oat-spelt xylan (TLC) analysis showed that the final hydrolyzed products of the enzyme from birchwood xylan were xylose, xylobiose, and xylotriose. Taken together, the results indicated that the XYN35 enzyme has a number of attractive biochemical properties that make it a potential promising candidate for future application in the pulp bleaching industry
    corecore