966 research outputs found

    Electron Wave Filters from Inverse Scattering Theory

    Full text link
    Semiconductor heterostructures with prescribed energy dependence of the transmittance can be designed by combining: {\em a)} Pad\'e approximant reconstruction of the S-matrix; {\em b)} inverse scattering theory for Schro\"dinger's equation; {\em c)} a unitary transformation which takes into account the variable mass effects. The resultant continuous concentration profile can be digitized into an easily realizable rectangular-wells structure. For illustration, we give the specifications of a 2 narrow band-pass 12 layer AlcGa1cAsAl_cGa_{1-c}As filter with the high energy peak more than {\em twice narrower} than the other.Comment: 4 pages, Revtex with one eps figur

    Universal analytic properties of noise. Introducing the J-Matrix formalism

    Full text link
    We propose a new method in the spectral analysis of noisy time-series data for damped oscillators. From the Jacobi three terms recursive relation for the denominators of the Pad\'e Approximations built on the well-known Z-transform of an infinite time-series, we build an Hilbert space operator, a J-Operator, where each bound state (inside the unit circle in the complex plane) is simply associated to one damped oscillator while the continuous spectrum of the J-Operator, which lies on the unit circle itself, is shown to represent the noise. Signal and noise are thus clearly separated in the complex plane. For a finite time series of length 2N, the J-operator is replaced by a finite order J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different classes of input noise, such as blank (white and uniform), Gaussian and pink, are discussed in detail, the J-Matrix formalism allowing us to efficiently calculate hundreds of poles of the Z-transform. Evidence of a universal behaviour in the final statistical distribution of the associated poles and zeros of the Z-transform is shown. In particular the poles and zeros tend, when the length of the time series goes to infinity, to a uniform angular distribution on the unit circle. Therefore at finite order, the roots of unity in the complex plane appear to be noise attractors. We show that the Z-transform presents the exceptional feature of allowing lossless undersampling and how to make use of this property. A few basic examples are given to suggest the power of the proposed method.Comment: 14 pages, 8 figure

    Quantum toboggans: models exhibiting a multisheeted PT symmetry

    Full text link
    A generalization of the concept of PT-symmetric Hamiltonians H=p^2+V(x) is described. It uses analytic potentials V(x) (with singularities) and a generalized concept of PT-symmetric asymptotic boundary conditions. Nontrivial toboggans are defined as integrated along topologically nontrivial paths of coordinates running over several Riemann sheets of wave functions.Comment: 16 pp, 5 figs. Written version of the talk given during 5th International Symposium on Quantum Theory and Symmetries, University of Valladolid, Spain, July 22 - 28 2007, webpage http://tristan.fam.uva.es/~qts

    Yang-Lee Zeros of the Ising model on Random Graphs of Non Planar Topology

    Get PDF
    We obtain in a closed form the 1/N^2 contribution to the free energy of the two Hermitian N\times N random matrix model with non symmetric quartic potential. From this result, we calculate numerically the Yang-Lee zeros of the 2D Ising model on dynamical random graphs with the topology of a torus up to n=16 vertices. They are found to be located on the unit circle on the complex fugacity plane. In order to include contributions of even higher topologies we calculated analytically the nonperturbative (sum over all genus) partition function of the model Z_n = \sum_{h=0}^{\infty} \frac{Z_n^{(h)}}{N^{2h}} for the special cases of N=1,2 and graphs with n\le 20 vertices. Once again the Yang-Lee zeros are shown numerically to lie on the unit circle on the complex fugacity plane. Our results thus generalize previous numerical results on random graphs by going beyond the planar approximation and strongly indicate that there might be a generalization of the Lee-Yang circle theorem for dynamical random graphs.Comment: 19 pages, 7 figures ,1 reference and a note added ,To Appear in Nucl.Phys

    On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity

    Get PDF
    We have studied a model which has been proposed as a regularisation for four dimensional quantum gravity. The partition function is constructed by performing a weighted sum over all triangulations of the four sphere. Using numerical simulation we find that the number of such triangulations containing VV simplices grows faster than exponentially with VV. This property ensures that the model has no thermodynamic limit.Comment: 8 pages, 2 figure

    PT-symmetry and its spontaneous breakdown explained by anti-linearity

    Get PDF
    The impact of an anti-unitary symmetry on the spectrum of non-Hermitian operators is studied. Wigner's normal form of an anti-unitary operator accounts for the spectral properties of non-Hermitian, PE-symmetric Harniltonians. The occurrence of either single real or complex conjugate pairs of eigenvalues follows from this theory. The corresponding energy eigenstates span either one- or two-dimensional irreducible representations of the symmetry PE. In this framework, the concept of a spontaneously broken PE-symmetry is not needed

    On the uniqueness of the surface sources of evoked potentials

    Full text link
    The uniqueness of a surface density of sources localized inside a spatial region RR and producing a given electric potential distribution in its boundary B0B_0 is revisited. The situation in which RR is filled with various metallic subregions, each one having a definite constant value for the electric conductivity is considered. It is argued that the knowledge of the potential in all B0B_0 fully determines the surface density of sources over a wide class of surfaces supporting them. The class can be defined as a union of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of the closed surfaces contains inside it another (nesting) of the closed or open surfaces.Comment: 16 pages, 5 figure

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques

    Space of State Vectors in PT Symmetrical Quantum Mechanics

    Get PDF
    Space of states of PT symmetrical quantum mechanics is examined. Requirement that eigenstates with different eigenvalues must be orthogonal leads to the conclusion that eigenfunctions belong to the space with an indefinite metric. The self consistent expressions for the probability amplitude and average value of operator are suggested. Further specification of space of state vectors yield the superselection rule, redefining notion of the superposition principle. The expression for the probability current density, satisfying equation of continuity and vanishing for the bound state, is proposed.Comment: Revised version, explicit expressions for average values and probability amplitude adde

    Eigenvalues of PT-symmetric oscillators with polynomial potentials

    Full text link
    We study the eigenvalue problem u(z)[(iz)m+Pm1(iz)]u(z)=λu(z)-u^{\prime\prime}(z)-[(iz)^m+P_{m-1}(iz)]u(z)=\lambda u(z) with the boundary conditions that u(z)u(z) decays to zero as zz tends to infinity along the rays argz=π2±2πm+2\arg z=-\frac{\pi}{2}\pm \frac{2\pi}{m+2}, where Pm1(z)=a1zm1+a2zm2+...+am1zP_{m-1}(z)=a_1 z^{m-1}+a_2 z^{m-2}+...+a_{m-1} z is a polynomial and integers m3m\geq 3. We provide an asymptotic expansion of the eigenvalues λn\lambda_n as n+n\to+\infty, and prove that for each {\it real} polynomial Pm1P_{m-1}, the eigenvalues are all real and positive, with only finitely many exceptions.Comment: 23 pages, 1 figure. v2: equation (14) as well as a few subsequent equations has been changed. v3: typos correcte
    corecore