9 research outputs found

    Buckling of Functionally Graded Nanobeams Based on the Nonlocal New First-Order Shear Deformation Beam Theory

    No full text
    In this work, the size-dependent buckling behavior of functionally graded (FG) nanobeams is investigated on the basis of the nonlocal continuum model. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. In addition, Poisson’s ratio is assumed constant in the current model. The nanobeams is modelled according to the new first order shear beam theory with small deformation and the equilibrium equations are derived using the Hamilton’s principle. The Naviertype solution is developed for simply-supported boundary conditions, and exact formulas are proposed for the buckling load. The effects of nonlocal parameter, aspect ratio, various material compositions on the stability responses of the FG nanobeams are discussed

    Buckling of Functionally Graded Nanobeams Based on the Nonlocal New First-Order Shear Deformation Beam Theory

    No full text
    In this work, the size-dependent buckling behavior of functionally graded (FG) nanobeams is investigated on the basis of the nonlocal continuum model. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. In addition, Poisson’s ratio is assumed constant in the current model. The nanobeams is modelled according to the new first order shear beam theory with small deformation and the equilibrium equations are derived using the Hamilton’s principle. The Naviertype solution is developed for simply-supported boundary conditions, and exact formulas are proposed for the buckling load. The effects of nonlocal parameter, aspect ratio, various material compositions on the stability responses of the FG nanobeams are discussed

    Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory

    No full text
    International audienceIn the present work we study the static response of functionally graded (FG) porous nanocomposite beams, with a uniform or non-uniform layer-wise distribution of the internal pores and graphene platelets (GPLs) reinforcing phase in the matrix, according to three different patterns. The finite-element approach is developed here together with a non-local strain gradient theory and a novel trigonometric two-variable shear deformation beam theory, to study the combined effects of the non-local stress and strain gradient on the FG structure. The governing equations of the problem are solved introducing a three-node beam element. A comprehensive parametric study is carried out on the bending behavior of nanocomposite beams, with a particular focus on their sensitivity to the weight fraction and distribution pattern of GPLs reinforcement, as well as to the non-local scale parameters, geometrical properties, and boundary conditions. Based on the results, it seems that the porosity distribution and GPLs pattern have a meaningful effect on the structural behavior of nanocomposite beams, where the optimal response is reached for a non-uniform and symmetric porosity distribution and GPLs dispersion pattern within the material
    corecore