116 research outputs found

    A computational model of perception and action for cognitive robotics

    Get PDF
    Robots are increasingly expected to perform tasks in complex environments. To this end, engineers provide them with processing architectures that are based on models of human information processing. In contrast to traditional models, where information processing is typically set up in stages (i.e., from perception to cognition to action), it is increasingly acknowledged by psychologists and robot engineers that perception and action are parts of an interactive and integrated process. In this paper, we present HiTEC, a novel computational (cognitive) model that allows for direct interaction between perception and action as well as for cognitive control, demonstrated by task-related attentional influences. Simulation results show that key behavioral studies can be readily replicated. Three processing aspects of HiTEC are stressed for their importance for cognitive robotics: (1) ideomotor learning of action control, (2) the influence of task context and attention on perception, action planning, and learning, and (3) the interaction between perception and action planning. Implications for the design of cognitive robotics are discussed

    Increasing the role of belief information in moral judgments by stimulating the right temporoparietal junction

    Get PDF
    a b s t r a c t Morality plays a vital role in our social life. A vast body of research has suggested that moral judgments rely on cognitive processes mediated by the right temporoparietal junction (rTPJ), an area thought to be involved in belief attribution. Here we assessed the role of the rTPJ in moral judgments directly by means of transcranial direct current stimulation (tDCS) -a non-invasive brain stimulation technique that, by applying a weak current to the scalp, allows modulating cortical excitability of the area being stimulated. Participants were randomly and equally assigned to receive anodal stimulation (to increase cortical excitability), cathodal stimulation (to decrease cortical excitability), or sham (placebo) stimulation over the rTPJ before completing a moral judgment task. Participants read stories in which protagonists produced either a negative or a neutral outcome based on either a negative or a neutral belief that they were causing harm or no harm, respectively. Results revealed a selective group difference when judging the moral permissibility of accidental harms (belief neutral, outcome negative), but not intentional harms (belief negative, outcome negative), attempted harms (belief negative, outcome neutral), or neutral acts (belief neutral, outcome neutral). Specifically, participants who received anodal stimulation assigned less blame to accidental harms compared to participants who received cathodal or sham stimulation. These results are consistent with previous findings showing that the degree of rTPJ activation reflects reliance on the agent's innocent intention. Crucially, our findings provide direct evidence supporting the critical role of the rTPJ in mediating belief attribution for moral judgment

    Losing the Big Picture: How Religion May Control Visual Attention

    Get PDF
    Despite the abundance of evidence that human perception is penetrated by beliefs and expectations, scientific research so far has entirely neglected the possible impact of religious background on attention. Here we show that Dutch Calvinists and atheists, brought up in the same country and culture and controlled for race, intelligence, sex, and age, differ with respect to the way they attend to and process the global and local features of complex visual stimuli: Calvinists attend less to global aspects of perceived events, which fits with the idea that people's attentional processing style reflects possible biases rewarded by their religious belief system

    Impaired Inhibitory Control in Recreational Cocaine Users

    Get PDF
    Chronic use of cocaine is associated with impairment in response inhibition but it is an open question whether and to which degree findings from chronic users generalize to the upcoming type of recreational users. This study compared the ability to inhibit and execute behavioral responses in adult recreational users and in a cocaine-free-matched sample controlled for age, race, gender distribution, level of intelligence, and alcohol consumption. Response inhibition and response execution were measured by a stop-signal paradigm. Results show that users and non users are comparable in terms of response execution but users need significantly more time to inhibit responses to stop-signals than non users. Interestingly, the magnitude of the inhibitory deficit was positively correlated with the individuals lifetime cocaine exposure suggesting that the magnitude of the impairment is proportional to the degree of cocaine consumed

    Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data

    Get PDF
    The discovery of mirror neurons has suggested a potential neural basis for simulation and common coding theories of action perception, theories which propose that we understand other people's actions because perceiving their actions activates some of our neurons in much the same way as when we perform the actions. We propose testing this model directly in humans with functional magnetic resonance imaging (fMRI) by means of cross-modal classification. Cross-modal classification evaluates whether a classifier that has learned to separate stimuli in the sensory domain can also separate the stimuli in the motor domain. Successful classification provides support for simulation theories because it means that the fMRI signal, and presumably brain activity, is similar when perceiving and performing actions. In this paper we demonstrate the feasibility of the technique by showing that classifiers which have learned to discriminate whether a participant heard a hand or a mouth action, based on the activity patterns in the premotor cortex, can also determine, without additional training, whether the participant executed a hand or mouth action. This provides direct evidence that, while perceiving others' actions, (1) the pattern of activity in premotor voxels with sensory properties is a significant source of information regarding the nature of these actions, and (2) that this information shares a common code with motor execution

    A Simon effect induced by induced motion and location: Evidence for a direct linkage of cognitive and motor maps

    Full text link
    It has been argued that two distinct maps of visual space are formed: a cognitive map that is susceptible to illusions, and a motor map that represents the physical world veridically. In the present study, subjects responded to a nonspatial attribute of a visual target stimulus by pressing a left or right key, while an illusory horizontal displacement of the target was induced. A Simon-type effect was obtained to the induced target motion or position shift—that is, responses were faster when the illusory target motion or location corresponded to the response position. Further experiments indicated that the observed effects cannot be accounted for by attentional shifts. These results suggest that the content of the cognitive map does not only influence perceptual judgments but is also responsible for the automatic activation of response codes. In other words, perception and action seem to be fed by a common, cognitively penetrable, spatial representation
    corecore