32 research outputs found

    Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin

    Get PDF
    The potential of amphiphilic chitosan formed by grafting octanoyl chains on the chitosan backbone for pulmonary delivery of levofloxacin has been studied. The success of polymer synthesis was confirmed using FT-IR and NMR, whilst antimicrobial activity was assessed against Pseudomonas aeruginosa. Highly dispersible dry powders for delivery as aerosols were prepared with different amounts of chitosan and octanoyl chitosan to study the effect of hydrophobic modification and varying concentration of polymer on aerosolization of drug. Powders were prepared by spray-drying from an aqueous solution containing levofloxacin and chitosan/amphiphilic octanoyl chitosan. L-leucine was also used to assess its effect on aerosolization. Following spray-drying, the resultant powders were characterized using scanning electron microscopy, laser diffraction, dynamic light scattering, HPLC, differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. The in vitro aerosolization profile was determined using a Next Generation Impactor, whilst in vitro antimicrobial assessment was performed using MIC assay. Microparticles of chitosan have the property of mucoadhesion leading to potential increased residence time in the pulmonary mucus, making it important to test the toxicity of these formulations. In-vitro cytotoxicity evaluation using MTT assay was performed on A549 cell line to determine the toxicity of formulations and hence feasibility of use. The MTT assay confirmed that the polymers and the formulations were non-cytotoxic. Hydrophobically modifying chitosan showed significantly lower MIC (4-fold) than the commercial chitosan against P. aeruginosa. The powders generated were of suitable aerodynamic size for inhalation having a mass median aerodynamic diameter less than 4.5 lm for formulations containing octanoyl chitosan. These highly dispersible powders have minimal moisture adsorption and hence an emitted dose of more than 90% and a fine particle fraction (FPF) of 52%. Powders with non-modified chitosan showed lower dispersibility, with an emitted dose of 72% and FPF of 20%, as a result of high moisture adsorption onto the chitosan matrix leading to cohesiveness and subsequently decreased dispersibility

    Expression and function of human hemokinin-1 in human and guinea pig airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Substained release of insulin from insoluble inhaled particles

    No full text
    Conventional slow-acting insulin preparations for subcutaneous injection, e.g., suspensions of the complex with protamine and/or zinc, were reformulated as dry powders for inhalation and the insoluble aerosol tested for providing sustained insulin plasma levels. Large porous particles made of lactose, albumin, and dipalmitoylphosphatidylcholine, and incorporating insulin, protamine, and/or zinc chloride were prepared using spray-drying. Integrity of insulin after spray-drying and insulin insolubilization in spraydried particles was verified in vitro. The pharmacokinetic profile of the formulation delivered by inhalation and subcutaneous injection was assessed in vivo in the rat. The formulation process of insulin as dry powders did not alter insulin integrity and did not impede, in most cases, insulin insolubilization by protamine and/or zinc. Large porous insulin particles presented 7 μm mass mean geometric particle diameters, 0.1 g/ cm3 bulk powder tap densities and theoretical aerodynamic diameters suitable for deep lung deposition (in the range of 2.2-2.5 μm). The dry powders exhibited 40% respirable fractions in the Andersen cascade impactor and 58-75% in the Aero-Breather. Insoluble inhaled insulin provided sustained insulin plasma levels for half a day, similar to injected insulin, and exhibited a bioavailability of 80.5% relative to subcutaneous injection of the same formulation

    Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs.

    No full text
    PURPOSE: To determine whether a new formulated albuterol aerosol could sustain inhibition to bronchoconstriction for approximately one day in guinea pigs challenged with carbachol. METHODS: Large and porous particles, comprising a combination of endogenous or FDA-approved excipients and albuterol sulfate, were prepared by spray drying using a NIRO portable spray drier. The anesthetized animals inhaled 5 mg of large porous or small nonporous particles by forced ventilation via cannulae inserted in the lumen of their exposed tracheae. At regular intervals over a period of 36 hours after drug delivery, airway resistance was determined in response to carbachol challenge dose. RESULTS: Whereas inhalation of small nonporous albuterol particles protected from the carbachol-induced bronchoconstriction for up to 5 hours, inhalation of large porous albuterol particles produced a significant inhibition of carbachol-induced bronchoconstriction for at least 16 hours. CONCLUSIONS: The absence of substantial side effects, verified over a period of 24 hours by evaluating cardio-respiratory parameters as well as pulmonary inflammation, supports the utility of large porous albuterol particles for sustained therapies in asthma and other types of lung disease
    corecore