110 research outputs found
Candy wrapper for the Earth's inner core
Recent global expansion of seismic data motivated a number of seismological studies of the Earth's inner core that proposed the existence of increasingly complex structure and anisotropy. In the meantime, new hypotheses of dynamic mechanisms have been put forward to interpret seismological results. Here, the nature of hemispherical dichotomy and anisotropy is re-investigated by bridging the observations of PKP(bc-df) differential travel-times with the iron bcc/hcp elastic properties computed from first-principles methods. The Candy Wrapper velocity model introduced here accounts for a dynamic picture of the inner core (i.e., the eastward drift of material), where different iron crystal shapes can be stabilized at the two hemispheres. We show that seismological data are best explained by a rather complicated, mosaic-like, structure of the inner core, where well-separated patches of different iron crystals compose the anisotropic western hemispherical region, and a conglomerate of almost indistinguishable iron phases builds-up the weakly anisotropic eastern side
First principles simulations of direct coexistence of solid and liquid aluminium
First principles calculations based on density functional theory, with
generalised gradient corrections and ultrasoft pseudopotentials, have been used
to simulate solid and liquid aluminium in direct coexistence at zero pressure.
Simulations have been carried out on systems containing up to 1000 atoms for 15
ps. The points on the melting curve extracted from these simulations are in
very good agreement with previous calculations, which employed the same
electronic structure method but used an approach based on the explicit
calculation of free energies [L. Vo\v{c}adlo and D. Alf\`e, Phys. Rev. B, {\bf
65}, 214105 (2002).]Comment: To appear in Phys. Rev.
Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve
{\em Ab initio} techniques based on density functional theory in the
projector-augmented-wave implementation are used to calculate the free energy
and a range of other thermodynamic properties of liquid iron at high pressures
and temperatures relevant to the Earth's core. The {\em ab initio} free energy
is obtained by using thermodynamic integration to calculate the change of free
energy on going from a simple reference system to the {\em ab initio} system,
with thermal averages computed by {\em ab initio} molecular dynamics
simulation. The reference system consists of the inverse-power pair-potential
model used in previous work. The liquid-state free energy is combined with the
free energy of hexagonal close packed Fe calculated earlier using identical
{\em ab initio} techniques to obtain the melting curve and volume and entropy
of melting. Comparisons of the calculated melting properties with experimental
measurement and with other recent {\em ab initio} predictions are presented.
Experiment-theory comparisons are also presented for the pressures at which the
solid and liquid Hugoniot curves cross the melting line, and the sound speed
and Gr\"{u}neisen parameter along the Hugoniot. Additional comparisons are made
with a commonly used equation of state for high-pressure/high-temperature Fe
based on experimental data.Comment: 16 pages including 6 figures and 5 table
Simulation of thermal conductivity and heat transport in solids
Using molecular dynamics (MD) with classical interaction potentials we
present calculations of thermal conductivity and heat transport in crystals and
glasses. Inducing shock waves and heat pulses into the systems we study the
spreading of energy and temperature over the configurations. Phonon decay is
investigated by exciting single modes in the structures and monitoring the time
evolution of the amplitude using MD in a microcanonical ensemble. As examples,
crystalline and amorphous modifications of Selenium and are
considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in
PR
Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions
The first-principles periodic linear combination of atomic orbitals method
within the framework of density functional theory implemented in the CRYSTAL06
code has been applied to explore effect of pressure on the Compton profiles and
autocorrelation functions of MgO. Calculations are performed for the B1, B2,
B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk
moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to
B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42
and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2
are found to occur at 340 and 410 GPa respectively. The pressure dependent
changes are observed largely in the valence electrons Compton profiles whereas
core profiles are almost independent of the pressure in all MgO polymorphs.
Increase in pressure results in broadening of the valence Compton profiles. The
principal maxima in the second derivative of Compton profiles shifts towards
high momentum side in all structures. Reorganization of momentum density in the
B1 to B2 structural phase transition is seen in the first and second
derivatives before and after the transition pressure. Features of the
autocorrelation functions shift towards lower r side with increment in
pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials
Scienc
Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy
The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of âź10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185â1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in âź100 ps for 10 nm crystallites
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature
Compared to other body-centered cubic (bcc) transition metals, Nb has been the subject of fewer compression studies and there are still aspects of its phase diagram which are unclear. Here, we report a combined theoretical and experimental study of Nb under high pressure and temperature. We present the results of static laser-heated diamond anvil cell experiments up to 120 GPa using synchrotron-based fast x-ray diffraction combined with ab initio quantum molecular dynamics simulations. The melting curve of Nb is determined and evidence for a solid-solid phase transformation in Nb with increasing temperature is found. The high-temperature phase of Nb is orthorhombic Pnma. The bcc-Pnma transition is clearly seen in the experimental data on the Nb principal Hugoniot. The bcc-Pnma coexistence observed in our experiments is explained. Agreement between the measured and calculated melting curves is very good except at 40â60 GPa where three experimental points lie below the theoretical melting curve by 250 K (or 7%); a possible explanation is given
- âŚ