104 research outputs found

    Electrospun Nanofibrous Membranes for Water Treatment

    Get PDF
    Nanofibrous structures offer a lot of fascinating features due to large specific surface area. This makes them promising for a wide range of applications, most specifically water treatment. This new generation of highly porous membranes exhibits great prospect to be used in various separation applications due to their distinguished features such as remarkably high porosity (≥90%) and interconnected 3D pore structure. As compared with the conventional techniques, Electrospinning has been highlighted for developing unique porous membranes. Electrospun nanofibrous membranes have been more and more investigated to a lot of advanced water treatment purposes. This chapter reviews the updates on electrospun nanofibrous membranes with a particular prominence in recent accomplishments, bottlenecks, and future perspectives in water treatment. To start, the basic principles of electrospinning are discussed. Next, past and recent efforts for fabricating electrospun MF membranes for various applications are reviewed. The application of electrospun nanofibers as the scaffold for TFC (thin-film composite) membranes in the pressure- and osmotic-membrane processes is then introduced. The new application of electrospun nanofibrous membranes for the thermally-driven MD (membrane distillation) process for water treatment as well as strategies for performance enhancement is discussed. To finish, conclusions and perspectives are stated according to recent developments

    A Single Wearable Sensor for Gait Analysis in Parkinson’s Disease: A Preliminary Study

    Get PDF
    Movement monitoring in patients with Parkinson’s disease (PD) is critical for quantifying disease progression and assessing how a subject responds to medication administration over time. In this work, we propose a continuous monitoring system based on a single wearable sensor placed on the lower back and an algorithm for gait parameters evaluation. In order to preliminarily validate the proposed system, seven PD subjects took part in an experimental protocol in preparation for a larger randomized controlled study. We validated the feasibility of our algorithm in a constrained environment through a laboratory scenario. Successively, it was tested in an unsupervised environment, such as the home scenario, for a total of almost 12 h of daily living activity data. During all phases of the experimental protocol, videos were shot to document the tasks. The obtained results showed a good accuracy of the proposed algorithm. For all PD subjects in the laboratory scenario, the algorithm for step identification reached a percentage error low of 2%, 99.13% of sensitivity and 100% of specificity. In the home scenario the Bland–Altman plot showed a mean difference of −3.29 and −1 between the algorithm and the video recording for walking bout detection and steps identification, respectively

    Imprints of clustering in multiplicity fluctuations

    Full text link
    In this paper, we investigate the multiplicity fluctuations of charged particles observed in high-energy nuclear collisions and relate them to the size of hadronizing systems which happen during such processes. We use the average multiplicities N\langle N\rangle and variances Var(N)Var\left(N\right) of multiplicity distributions of charged particles produced in centrality selected collisions of relativistic heavy-ion nuclei to evaluate the dynamic variable Ω\Omega and study its dependence on the size of colliding nuclei. We connect the observed system-size dependence of multiplicity fluctuations with the clustering phenomena and the finiteness of the hadronizing sources and the thermal bath

    Kidney segmentation using 3D U-Net localized with Expectation Maximization

    Full text link
    Kidney volume is greatly affected in several renal diseases. Precise and automatic segmentation of the kidney can help determine kidney size and evaluate renal function. Fully convolutional neural networks have been used to segment organs from large biomedical 3D images. While these networks demonstrate state-of-the-art segmentation performances, they do not immediately translate to small foreground objects, small sample sizes, and anisotropic resolution in MRI datasets. In this paper we propose a new framework to address some of the challenges for segmenting 3D MRI. These methods were implemented on preclinical MRI for segmenting kidneys in an animal model of lupus nephritis. Our implementation strategy is twofold: 1) to utilize additional MRI diffusion images to detect the general kidney area, and 2) to reduce the 3D U-Net kernels to handle small sample sizes. Using this approach, a Dice similarity coefficient of 0.88 was achieved with a limited dataset of n=196. This segmentation strategy with careful optimization can be applied to various renal injuries or other organ systems

    Oregano (Origanum vulgare) Consumption Reduces Oxidative Stress and Markers of Muscle Damage after Combat Readiness Tests in Soldiers

    Full text link
    Military activities often involve high-intensity exercise that can disrupt antioxidant capacity. We investigated the effects of oregano supplementation on muscle damage, oxidative stress, and plasma antioxidant markers of soldiers performing the army combat readiness test (ACRT). Twenty-four healthy male soldiers (age: 24 ± 3 years, height: 167 ± 14 cm, mass: 66 ± 3 kg) were randomized into a placebo group (n = 12) or an oregano supplementation group (n = 12). The participants consumed a capsule containing 500 mg Origanum vulgare immediately after completing the ACRT. Blood sampling was taken before exercise, immediately after exercise, and 60 and 120 min after oregano consumption. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), and glutathione peroxidase (GPX) were measured at the four time points. The time × group interactions were found for CK (p < 0.0001, d = 3.64), LDH (p < 0.0001, d = 1.64), MDA (p < 0.0001, d = 9.94), SOD (p < 0.0001, d = 1.88), TAC (p < 0.0001, d = 5.68) and GPX (p < 0.0001, d = 2.38). In all variables, the difference between placebo and oregano groups were significant at 60 (p < 0.0001) and 120 (p < 0.0001) minutes after ACRT test. The main effect of time was also significant for all the variables (p < 0.0001). Our results suggest that oregano supplementation has the potential to reduce muscle damage and increase oxidative capacity following ACRT. Supplementation with oregano may serve as a dietary strategy to increase preparedness and promote recovery in military recruits

    A novel method for the synthesis of spiroindoline-pyrazolo4',3':5,6] pyrido2,3-dpyrimidinetriones by alum as a reusable catalyst

    Get PDF
    Synthesis of spiroindoline-pyrazolo4',3':5,6]pyrido2,3-dpyrimidine trione derivatives by a cyclo-condensation reaction of indolin-2-ones, barbituric acids, and 1,3-diphenyl-1H-pyrazol-5-amines with the ionic liquid as an effective green reaction media and in the presence of Alum as a reusable catalyst was reported. Excellent yields of products, green media, use of a reusable catalyst, and short reaction time are the main advantages of this new method. © 2012 HeteroCorporation

    Measurements of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} spectra in 40^{40}Ar+45^{45}Sc collisions at 13AA to 150AA GeV/cc

    Full text link
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} produced in 40^{40}Ar+45^{45}Sc collisions at beam momenta of 13AA, 19AA, 30AA, 40AA, 75AA and 150AA GeV/cc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the K±K^\pm/π±\pi^\pm ratios as well as of inverse slope parameters of the K±K^\pm transverse mass distributions are placed in between those found in inelastic pp+pp and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical (SMES, HRG) or dynamical (EPOS, UrQMD, PHSD, SMASH) models

    Measurements of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^- production in 120 GeV/cc p + C interactions

    Full text link
    This paper presents multiplicity measurements of charged hadrons produced in 120 GeV/cc proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different data-taking periods, with increased phase space coverage in the second configuration due to the addition of new subdetectors. Particle identification via dE/dxdE/dx was employed to obtain double-differential production multiplicities of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^-. These measurements are presented as a function of laboratory momentum in intervals of laboratory polar angle covering the range from 0 to 450 mrad. They provide crucial inputs for current and future long-baseline neutrino experiments, where they are used to estimate the initial neutrino flux

    Search for the critical point of strongly-interacting matter in 40^{40}Ar + 45^{45}Sc collisions at 150A Ge V /c using scaled factorial moments of protons

    Get PDF
    The critical point of dense, strongly interacting matter is searched for at the CERN SPS in 40^{40}Ar + 45^{45}Sc collisions at 150A Ge V /c. The dependence of second-order scaled factorial moments of proton multiplicity distribution on the number of subdivisions of transverse momentum space is measured. The intermittency analysis is performed using both transverse momentum and cumulative transverse momentum. For the first time, statistically independent data sets are used for each subdivision number. The obtained results do not indicate any statistically significant intermittency pattern. An upper limit on the fraction of correlated proton pairs and the power of the correlation function is obtained based on a comparison with the Power-law Model developed for this purpose
    corecore