15 research outputs found

    The New Insight into the Role of Antimicrobial Proteins-Alarmins in the Immunopathogenesis of Psoriasis

    Get PDF
    The pathognesis of psoriasis still remains not fully elucidated. Recent advances favor the idea that interactions between innate and adaptive immune response drive inflammatory process in this disease. Innate antimicrobial peptides and proteins (AMPs) are diverse group of small molecules that provide the first line of defense against invading pathogens. In recent years, the novel functions ofAMPs have been identified. There are three subclasses among AMPs that have gained the special interest as a potentially important player in the pathogenesis of psoriasis: cathelicidin, S100 proteins, and defensins. These AMPs have been shown to modulate and trigger host immune response in psoriasis acting as interplayer between innate and adaptive immune mechanisms. Overexpressed in psoriatic lesions, they prime immune cells for enhanced production of proinflammatory mediators and act as chemoattractant for leukocytes. Therefore, the novel term describing AMPs alarmins has been suggested. As multifunctional player in pathogenesis of psoriasis, AMPs may constitute potential target for therapeutic interventions. However, further investigations are required to establish the methods of downregulation of the aberrant proinflammatory functions of AMPs without increasing the risk of infections

    Th17 micro-milieu regulates NLRP1-dependent caspase-5 activity in skin autoinflammation.

    Get PDF
    IL-1β is a potent player in cutaneous inflammation and central for the development of a Th17 micro-milieu in autoinflammatory diseases including psoriasis. Its production is controlled at the transcriptional level and by subsequent posttranslational processing via inflammatory caspases. In this study, we detected inflammatory caspase-5 active in epidermal keratinocytes and in psoriatic skin lesions. Further, interferon-γ and interleukin-17A synergistically induced caspase-5 expression in cultured keratinocytes, which was dependent on the antimicrobial peptide psoriasin (S100A7). However, diseases-relevant triggers for caspase-5 activity and IL-1β production remain unknown. Recently, extranuclear DNA has been identified as danger-signals abundant in the psoriatic epidermis. Here, we could demonstrate that cytosolic double-stranded (ds) DNA transfected into keratinocytes triggered the activation of caspase-5 and the release of IL-1β. Further, interleukin-17A promoted caspase-5 function via facilitation of the NLRP1-inflammasome. Anti-inflammatory vitamin D interfered with the IL-1β release and suppressed caspase-5 in keratinocytes and in psoriatic skin lesions. Our data link the disease-intrinsic danger signals psoriasin (S100A7) and dsDNA for NLPR1-dependent caspase-5 activity in psoriasis providing potential therapeutic targets in Th17-mediated skin autoinflammation

    The New Insight into the Role of Antimicrobial Proteins-Alarmins in the Immunopathogenesis of Psoriasis

    Get PDF
    The pathognesis of psoriasis still remains not fully elucidated. Recent advances favor the idea that interactions between innate and adaptive immune response drive inflammatory process in this disease. Innate antimicrobial peptides and proteins (AMPs) are diverse group of small molecules that provide the first line of defense against invading pathogens. In recent years, the novel functions of AMPs have been identified. There are three subclasses among AMPs that have gained the special interest as a potentially important player in the pathogenesis of psoriasis: cathelicidin, S100 proteins, and defensins. These AMPs have been shown to modulate and trigger host immune response in psoriasis acting as interplayer between innate and adaptive immune mechanisms. Overexpressed in psoriatic lesions, they prime immune cells for enhanced production of proinflammatory mediators and act as chemoattractant for leukocytes. Therefore, the novel term describing AMPs alarmins has been suggested. As multifunctional player in pathogenesis of psoriasis, AMPs may constitute potential target for therapeutic interventions. However, further investigations are required to establish the methods of downregulation of the aberrant proinflammatory functions of AMPs without increasing the risk of infections
    corecore