1,081 research outputs found

    Do female association preferences predict the likelihood of reproduction?

    Get PDF
    Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (<i>Xiphophorus helleri</i>) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important

    b-Gamma-glutamyltransferase activity in human vulnerable carotid plaques.

    Get PDF
    Objective: The atherosclerotic plaque that is vulnerable to rupture and to superimposed thrombosis is mainly represented by a thin-cap fibroatheroma with or without ulceration/thrombosis and inflammatory infiltrates. Total serum gamma-glutamyltransferase (GGT) activity is an independent predictor for cardiovascular events. Four GGT fractions have been identified in plasma and only one of them (b-GGT) in atherosclerotic plaques, but the possible role of GGT in plaque pathophysiology has not been assessed yet. We investigated the relationships between plaque b-GGT activity and the histological features of plaque vulnerability. Methods and results: Plaque GGT activity was investigated in 65 patients undergoing carotid endarterectomy; plaques were histologically characterized and immunostained for GGT. Intra-plaque total and fractional GGT activity was determined by a cost-effective test of molecular size exclusion chromatography, and compared with histological markers of plaque vulnerability. Plaque cholesterol content was also measured by chromatography. b-GGT was the only fraction detected within the atherosclerotic plaques and intra-plaque b-GGT activity correlated to plaque cholesterol content (r = 0.667, P < 0.0001), plasma b-GGT and f-GGT fractions (r = 0.249; r ¼ 0.298, both P < 0.05). Higher b- GGT activity was found in thin-cap fibroatheromas and it was associated to histological markers of vulnerable plaques, i.e., larger necrotic areas, greater macrophage infiltration and higher cholesterol content (P < 0.05). Conclusions: intra-plaque b-GGT activity correlates with the histological markers of vulnerable plaque and with plasma b-GGT in human carotid atherosclerosis; these data support the possible role of b-GGT in clinically significant atherosclerotic disease

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&#38;D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given

    Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology

    Get PDF
    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

    MicroRNA expression profiling of RAS-mutant thyroid tumors with follicular architecture: microRNA signatures to discriminate benign from malignant lesions

    Get PDF
    Purpose: RAS mutations represent common driver alterations in thyroid cancer. They can be found in benign, low-risk and malignant thyroid tumors with follicular architecture, which are often diagnosed as indeterminate nodules on preoperative cytology. Therefore, the detection of RAS mutations in preoperative setting has a suboptimal predictive value for malignancy. In this study, we investigated differentially expressed microRNA (miRNA) in benign and malignant thyroid tumors with follicular architecture carrying mutations in RAS genes. Methods: Total RNA was purified from 60 RAS-mutant follicular-patterned thyroid tumors, including follicular adenoma (FA), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), papillary and follicular thyroid carcinoma cases (PTC, FTC); 22 RAS-negative FAs were used as controls. The expression analysis of 798 miRNAs was performed by digital counting (nCounter nanoString platform). Results: Comparing RAS-mutant and RAS-negative FAs, 12 miRNAs showed significant deregulation, which was likely related to the oncogenic effects of RAS mutations. Twenty-two miRNAs were differentially expressed in RAS-mutant benign versus malignant tumors. Considering the tumor type, 24 miRNAs were deregulated in PTC, 19 in NIFTP, and seven in FTC and compared to FA group; among these, miR-146b-5p, miR-144-3p, and miR-451a showed consistent deregulation in all the comparisons with the highest fold change. Conclusions: The miRNA expression analysis of follicular-patterned thyroid tumors demonstrated that RAS mutations influences miRNA profile in benign tumors. In addition, several miRNAs showed a histotype-specific deregulation and could discriminate between RAS-mutant benign and RAS-mutant malignant thyroid lesions, thus deserving further investigation as potential diagnostic markers

    Imino-phospine palladium (II) and platinum (II) complexes: Synthesis, molecular structures and evaluation as antitumor agents

    Get PDF
    The imino-phosphine ligands L1 and L2 were prepared via condensation reaction of 2-(diphenylphosphino) benzaldehyde with substituted anilines and obtained in very good yields. An equimolar reaction of L1 and L2 with either PdCl2(cod) or PtCl2(cod) gave new palladium(II) and platinum(II) complexes 1–4. The compounds were characterized by elemental analysis, IR, 1H and 31P NMR spectroscopy. The molecular structures of 2, 3 and 4 were confirmed by X-ray crystallography. All the three molecular structures crystallized in monoclinic C2/c space system. The coordination geometry around the palladiumand platinumatoms in respective structures exhibited distorted square planar geometry at the metal centers. The complexes were evaluated in vitro for their cytotoxic activity against human breast (MCF-7) and human colon (HT-29) cancer cells, and they exhibited growth inhibitory activities and selectivity that were superior to the standard compound cisplatin.Web of Scienc

    Indeterminate Thyroid Nodules: From Cytology to Molecular Testing

    Get PDF
    Thyroid cancer is the most common malignancy of the endocrine system. Fine-needle aspiration (FNA) biopsy of thyroid nodules has become the gold standard procedure, in terms of cost and efficacy, for guiding clinicians towards appropriate patients’ management. One challenge for cytopathologists is to accurately classify cytological specimens as benign or malignant based on cytomorphological features. In fact, with a frequency ranging from 10% to 30%, nodules are diagnosed as indeterminate. In recent years, the mutational landscape of thyroid tumors has been extensively described, and two molecular profiles have been identified: RAS-like (NRAS, HRAS, and KRAS mutations; EIF1AX mutations; BRAF K601E mutation; and PPARG and THADA fusions) and BRAFV600E-like (including BRAFV600E mutation and RET and BRAF fusions). The purpose of this review is to discuss the latest molecular findings in the context of indeterminate thyroid nodules, highlighting the role of molecular tests in patients’ management

    Progression in MCF-7 Breast Cancer Cell Tumorigenicity: Compared Effect of FGF-3 and FGF-4.

    Full text link
    The transforming properties of fibroblast growth factor 3 (FGF-3) were investigated in MCF7 breast cancer cells and compared to those of FGF-4, a known oncogenic product. The short form of fgf-3 and the fgf-4 sequences were each introduced with retroviral vectors and the proteins were only detected in the cytoplasm of the infected cells, as expected. In vitro, cells producing FGF-3 (MCF7.fgf-3) and FGF-4 (MCF7.fgf-4) displayed an amount of estrogen receptors decreased to around 45% of the control value. However, MCF7.fgf-3 cell proliferation remained responsive to estradiol supply. The sensitivity of the MCF7.fgf-4 cells, if existant, was masked by the important mitogenic action exerted by FGF-4. In vivo, the MCF7.fgf-3 and MCF7.fgf-4 cells gave rise to tumors under conditions in which the control cells were not tumorigenic. Supplementing the mice with estrogen had the paradoxical effect of totally suppressing the start of the FGF-3 as well as the FGF-4 tumors. Tumorigenicity in the presence of matrigel was similar for MCF7.fgf-3 and control cells and was increased by estrogen supplementation. Once started, the MCF7.fgf-4 tumors grew with a characteristic high rate. Remarkably, FGF-4 but not FGF-3, stimulated the secretion of vascular endothelial growth factor (VEGF165) without altering the steady-state level of its mRNA, suggesting a possible regulation of VEGF synthesis at the translational level in MCF7 cells. The increased VEGF secretion is probably involved in the more aggressive phenotype of the MCF7.fgf-4 cells while a decreased dependence upon micro-environmental factors might be part of the increased tumorigenic potential of the MCF7.fgf-3 cells.Peer reviewe

    Autopsy Study of Testicles in COVID-19: Upregulation of Immune-Related Genes and Downregulation of Testis-Specific Genes

    Get PDF
    Context Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility. Objective Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes. Methods Three groups were compared: (a) uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); (b) subjects dying of COVID-19 (virus-negative in testes; n = 15); (c) subjects dying of COVID-19 (virus-positive in testes; n = 9). SARS-CoV-2 genome and nucleocapsid antigen were probed using RT-PCR, in situ hybridization, and immunohistochemistry (IHC). Infiltrating leukocytes were typed by IHC. mRNA transcripts of immune-related and testis-specific genes were quantified using the nCounter method. Results SARS-CoV-2 was detected in testis tissue of 9/24 (37%) COVID-19 cases accompanied by scattered T-cell and macrophage infiltrates. Size of testicles and counts of spermatogenic cells were not significantly different among groups. Analysis of mRNA transcripts showed that in virus-positive testes immune processes were activated (interferon-alpha and -gamma pathways). By contrast, transcription of 12 testis-specific genes was downregulated, independently of virus positivity in tissue. By IHC, expression of the luteinizing hormone/choriogonadotropin receptor was enhanced in virus-positive compared to virus-negative testicles, while expression of receptors for androgens and the follicle-stimulating hormone were not significantly different among groups. Conclusion In lethal COVID-19 cases, infection of testicular cells is not uncommon. Viral infection associates with activation of interferon pathways and downregulation of testis-specific genes involved in spermatogenesis. Due to the exceedingly high numbers of infected people in the pandemic, the impact of virus on fertility should be further investigated

    Expression of interleukin 6 (IL-6) correlates with oestrogen receptor in human breast carcinoma

    Get PDF
    Multifunctional cytokines play important and only partially defined roles in mammary tumour development and progression. Normal human mammary epithelial cells constitutively produce interleukin 6 (IL-6), IL-8 and a non-secreted form of tumour necrosis factor. Transformation of mammary epithelial cells by different oncogenes is frequently associated with alterations of cytokine/growth factor production and responsiveness. In the present study we analysed the expression of IL-6 in 149 cases of invasive breast carcinoma and the data have been correlated with clinico-pathological variables including tumour size, histological grade, nodal status, and oestrogen and progesterone receptors, Ki67 and p53, protein expression. Though the majority of breast carcinomas expressed at least low levels of immunoreactive IL-6, we found that expression of this cytokine was inversely associated with histological tumour grade (P = 0.0017), but not with tumour size and nodal status. Ki67 positivity was inversely correlated with IL-6 expression (P = 0.027). Among biological parameters analysed, a direct association was found between the percentage of IL-6-positive cells and that of oestrogen (P = 0.00005) and progesterone (P = 0.025) receptor-positive cells. No correlation was observed between IL-6 and p53 protein expression. These data indicate that down regulation of IL-6 is associated with highly malignant mammary carcinomas. It will be of interest to evaluate whether alterations of cytokines that are constitutively produced by mammary cells are also associated with high-grade tumours
    corecore