915 research outputs found
Low Power Analog Design in Scaled Technologies
In this paper an overview on the main issues in analog IC design in scaled CMOS technology is presented. Decreasing the length of MOS channel and the gate oxide has led to undoubted advantages in terms of chip area, speed and power consumption (mainly exploited in the digital parts). Besides, some drawbacks are introduced in term of power leakage and reliability. Moreover, the scaled technology lower supply voltage requirement has led analog designers to find new circuital solution to guarantee the required performance
Bidirectional Communication System on Power Line Integrated on Electronic Board for Driving of LED and HID Lamps
We present the bidirectional power line communication system developed in parallel to an electronic board for driving and control of HID (high-intensity discharge) and LED (light-emitting diode) lamps. The communication system, developed to be applied in the sector of public illumination, is been designed to combine high efficiency and reliability with low production costs; it consists indeed of discrete cheap components. The communication system described in this paper implements the technique of transporting digital information over existing power lines, avoiding the issue of installing new cables. Digitized signals can use power line cables through the amplitude voltage and current modulation. The solution proposed is more advantageous compared to communication techniques currently on the market which are essentially two types, power line carrier (modem for high-voltage lines) or radio (zig-Bee transceiver)
Внедрение и принцип работы системы сейсмического мониторинга горного массива для работы в условиях ООО "Шахта "Усковская"
The status of the Silicon Microvertex Detector (SMD) and its installation into the LEP-L3 experiment are presented, highlighting novel features and sophisticated techniques. Preliminary results based on 1993 data are given and compared with Monte Carlo predictions, to understand the detector performances and its tracking capabilities
Search for charged Higgs bosons in collisions at centre-of-mass energies between 130 and 183 GeV
A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-mass energies from \mbox{130 to 183 \GeV{}}, corresponding to an integrated luminosity of 88.3 \pb. The Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed candidates are consistent with the expectations from Standard Model background processes. A lower limit of 57.5 \GeV{} on the charged Higgs mass is derived at 95\% CL, independent of the decay branching ratio \mathrm{Br(H^\pm\ra \tau\nu)}
production in Z Decays
We have searched for evidence of Upsilon production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991-1995. No signals are observed for the decay chain Z -> Upsilon X; Upsilon -> l+l- (l= e, mu), therefore upper limits at the 95% confidence level are set on the following Z branching fractions: BR (Z -> Upsilon(1S) X) Upsilon(2S) X) Upsilon(3S) X) < 9.4 x 10**-5
Measurement of the Michel Parameters and the Average -Neutrino Helicity from Decays at LEP
Four of the Michel parameters and the average tau-neutrino helicity have been measured by analysing tau decay spectra in 147 \pb ~of data collected by the L3 detector. The decays \tte, ~\ttm, ~\ttp, ~\ttr ~and their charge conjugates were considered. The results: , , , and are consistent with a VA structure for the weak charged current and lepton universality
Measurement of the Average Lifetime of b-Hadrons in Z Decays
We present a measurement of the average b-hadron lifetime at the collider LEP. Using hadronic Z decays collected in the period from 1991 to 1994, two independent analyses have been performed. In the first one, the b-decay position is reconstructed as a secondary vertex of hadronic b-decay particles. The second analysis is an updated measurement of using the impact parameter of leptons with high momentum and high transverse momentum. The combined result is \begin{center} . \end{center} In addition, we measure the average charged b-decay multiplicity and the normalized average b-energy at LEP to be \begin{center} , \end{center} \begin{center} \end{center
Search for neutral charmless B decays at LEP
A search for rare charmless decays of \Bd and \Bs mesons has been performed in the exclusive channels \Bd_{(\mathrm s)}\ra\eta\eta, \Bd_{(\mathrm s)}\ra\eta\pio and \Bd_{(\mathrm s)}\ra\pio\pio. The data sample consisted of three million hadronic \Zo decays collected by the L3 experiment at LEP from 1991 through 1994. No candidate event has been observed and the following upper limits at 90\% confidence level on the branching ratios have been set \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\eta)<4.1\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\eta)<1.5\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\pio)<2.5\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\pio)<1.0\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\pio\pio)<6.0\times 10^{-5},\,\, \mathrm{Br}(\Bs\ra\pio\pio)<2.1\times 10^{-4}. \end{displaymath} These are the first experimental limits on \Bd\ra\eta\eta and on the \Bs neutral charmless modes
Single and multi-photon events with missing energy in collisions at 161 GeV < < 172 GeV
A search for single and multi-photon events with missing energy is performed using data collected at centre-of-mass energies between 161 GeV and 172 GeV for a total of 20.9 pb of integrated luminosity. The results obtained are used to derive the value for the cross section as well as upper limits on new physics processes
Measurement of the Effective Weak Mixing Angle by Jet-Charge Asymmetry in Hadronic Decays of the Z Boson
The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \begin{center} $\STE = 0.2327 \pm 0.0012(\mbox{\emph{stat.}} ) \pm 0.0013(\mbox{\emph{syst.}
- …
