2,082 research outputs found

    Shuttle antenna radome technology test program. Volume 2: Development of S-band antenna interface design

    Get PDF
    The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements

    MapReduce Operations with WS-VLAM Workflow Management System

    Get PDF
    AbstractWorkflow management systems are widely used to solve scientific problems as they enable orchestration of remote and lo- cal services such as database queries, job submission and running an application. To extend the role that workflow systems play in data-intensive science, we propose a solution that integrates WMS and MapReduce model. In this paper, we discuss possible solution of combining MapReduce and workflow applications, we describe the implementation of chosen solution based on metaprogramming approach in Ruby programming language and evaluate it with an example of word count application

    Perspective on the physics of two-dimensional perovskites in high magnetic field

    Get PDF
    Two-dimensional (2D) metal halide perovskites consist of atomically thin layers composed of low bandgap metal-halide slabs, surrounded by high bandgap organic ligands, which behave as barriers. In this Perspective, we highlight how the use of large magnetic fields has been an extremely insightful tool to unravel some of the fundamental electronic properties of 2D perovskites. We focus on the combination of magnetoabsorption measurements and theoretical modeling to extract the carrier effective mass, on the use of magnetic field to clarify the fine structure of the exciton manifold, and on how magnetic fields can be helpful to correctly assign side peaks in the complex absorption or photoluminescence spectra displayed by 2D perovskites. We finally point out some challenges which might be successfully addressed by magneto-optical experimental techniques

    A Time-Orbiting Potential Trap for Bose-Einstein Condensate Interferometry

    Full text link
    We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be used in atom interferometry experiments. The trap is based on a time-orbiting potential waveguide. It supports the atoms against gravity while providing weak confinement to minimize interaction effects. We observe harmonic oscillation frequencies omega_x, omega_y, omega_z as low as 2 pi times (6.0,1.2,3.3) Hz. Up to 2 times 10^4 condensate atoms have been loaded into the trap, at estimated temperatures as low as 850 pK. We anticipate that interferometer measurement times of 1 s or more should be achievable in this device.Comment: 9 pages, 3 figure

    Taxonomies for chronic visceral pain

    Get PDF

    Non equilibrium anisotropic excitons in atomically thin ReS2_2

    Full text link
    We present a systematic investigation of the electronic properties of bulk and few layer ReS2_2 van der Waals crystals using low temperature optical spectroscopy. Weak photoluminescence emission is observed from two non-degenerate band edge excitonic transitions separated by ∼\sim 20 meV. The comparable emission intensity of both excitonic transitions is incompatible with a fully thermalized (Boltzmann) distribution of excitons, indicating the hot nature of the emission. While DFT calculations predict bilayer ReS2_2 to have a direct fundamental band gap, our optical data suggests that the fundamental gap is indirect in all cases
    • …
    corecore