32 research outputs found

    High toxicity and specificity of the saponin 3-GlcA-28-AraRhaxyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules.</p> <p>Results</p> <p>It was observed that <it>Medicago truncatul</it>a seed flour displayed a strong toxic activity towards the adults of the rice weevil <it>Sitophilus oryzae</it> (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm <it>Caenorhabditis elegans</it> nor the bacteria <it>E. coli</it> were found to be sensitive to this saponin, but growth of the yeast <it>Saccharomyces cerevisiae</it> was inhibited at concentrations higher than 100 μg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 μg per g of food, but this does not apply to the others insects tested, including the coleopteran <it>Tribolium castaneum</it> and the Sf9 insect cultured cells.</p> <p>Conclusions</p> <p>This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting <it>via</it> its non-specific detergent properties.</p

    Larvicidal effects of endophytic and basidiomycete fungus extracts on Aedes and Anopheles larvae (Diptera, Culicidae)

    Get PDF
    Introduction In vitro bioassays were performed to access the larvicidal activity of crude extracts from the endophytic fungus Pestalotiopsis virgulata (Melanconiales, Amphisphaeriaceae) and the saprophytic fungus Pycnoporus sanguineus (Basidiomycetes, Polyporaceae) against the mosquitoes Aedes aegypti and Anopheles nuneztovari. Methods The extracts were tested at concentrations of 100, 200, 300, 400 and 500ppm. Ethyl acetate mycelia (EAM) extracts and liquid culture media (LCM) from Pe. virgulata and Py. sanguineus were tested against third instar larvae of Ae. aegypti and An. nuneztovari. Results The larvicidal activity of the EAM extracts from Pe. virgulata against Ae. aegypti had an LC50=101.8ppm, and the extract from the basidiomycete fungus Py. sanguineus had an LC50=156.8ppm against the Ae. aegypti larvae. The Pe. virgulata extract had an LC50=16.3ppm against the An. nuneztovari larvae, and the Py. sanguineus extract had an LC50=87.2ppm against these larvae. Conclusions These results highlight the larvicidal effect of EAM extracts from the endophyte Pe. virgulata against the two larval mosquitoes tested. Thus, Pe. virgulata and Py. sanguineus have the potential for the production of bioactive substances against larvae of these two tropical disease vectors, with An. nuneztovari being more susceptible to these extracts
    corecore