3,172 research outputs found

    Binary systems: implications for outflows & periodicities relevant to masers

    Full text link
    Bipolar molecular outflows have been observed and studied extensively in the past, but some recent observations of periodic variations in maser intensity pose new challenges. Even quasi-periodic maser flares have been observed and reported in the literature. Motivated by these data, we have tried to study situations in binary systems with specific attention to the two observed features, i.e., the bipolar flows and the variabilities in the maser intensity. We have studied the evolution of spherically symmetric wind from one of the bodies in the binary system, in the plane of the binary. Our approach includes the analytical study of rotating flows with numerical computation of streamlines of fluid particles using PLUTO code. We present the results of our findings assuming simple configurations, and discuss the implications.Comment: 5 pages, 3 figures, Proceedings IAU Symposium No. 287, 2012, Cosmic masers - from OH to H

    Giant Molecular Outflows Powered by Protostars in L1448

    Get PDF
    We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448 dark cloud. These maps were acquired using the On-The-Fly capability of the NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales for the first time. Careful comparison of the spatial and velocity distribution of our high-velocity CO maps with previously published optical and near-infrared images and spectra has led to the identification of six distinct CO outflows. We show the direct link between the heretofore unknown, giant, highly-collimated, protostellar molecular outflows and their previously discovered, distant optical manifestations. The outflows traced by our CO mapping generally reach the projected cloud boundaries. Integrated intensity maps over narrow velocity intervals indicate there is significant overlap of blue- and red-shifted gas, suggesting the outflows are highly inclined with respect to the line-of-sight, although the individual outflow position angles are significantly different. The velocity channel maps also show that the outflows dominate the CO line cores as well as the high-velocity wings. The magnitude of the combined flow momenta, as well as the combined kinetic energy of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which the protostars are currently forming, although some question remains as to the exact processes involved in redirecting the directionality of the outflow momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa

    A CO Survey of Young Planetary Nebulae

    Full text link
    We report the results of a sensitive survey of young planetary nebulae in the CO J=2-1 line that significantly increases the available data on warm, dense, molecular gas in the early phases of planetary nebula formation. The observations were made using the IRAM 30 m telescope with the 3 by 3 pixel Heterodyne Receiver Array (HERA). The array provides an effective means of discriminating the CO emission of planetary nebulae in the galactic plane from contaminating emission of interstellar clouds along the line of sight. 110 planetary nebulae were observed in the survey and 40 were detected. The results increase the number of young planetary nebulae with known CO emission by approximately a factor of two. The CO spectra yield radial velocities for the detected nebulae, about half of which have uncertain or no velocity measurements at optical wavelengths. The CO profiles range from parabolic to double-peaked, tracing the evolution of structure in the molecular gas. The line widths are significantly larger than on the Asymptotic Giant Branch, and many of the lines show extended wings, which probably result from the effects on the envelopes of high velocity jets.Comment: 29 pages, 2 figures (with multiple panels), to be published in Astrophysical Journal Supplement Serie

    Chemical evolution in the environment of intermediate mass young stellar objects: NGC7129--FIRS2 and LkHα\alpha234

    Full text link
    We have carried out a molecular survey of the Class 0 IM protostar NGC 7129 -- FIRS 2 (hereafter FIRS 2) and the Herbig Be star LkHα\alpha 234 with the aim of studying the chemical evolution of the envelopes of intermediate-mass (IM) young stellar objects (YSOs). Both objects have similar luminosities (~500 Lsun) and are located in the same molecular cloud which minimizes the chemical differences due to different stellar masses or initial cloud conditions. Moreover, since they are located at the same distance, we have the same spatial resolution in both objects. A total of 17 molecular species (including rarer isotopes) have been observed in both objects and the structure of their envelopes and outflows is determined with unprecedent detail. Our results show that the protostellar envelopes are dispersed and warmed up during the evolution to become a pre-main sequence star. In fact, the envelope mass decreases by a factor >5 from FIRS 2 to LkHα\alpha234, while the kinetic temperature increases from ~13K to 28K. On the other hand, there is no molecular outflow associated with LkHα\alpha234. The molecular outflow seems to stop before the star becomes visible. These physical changes strongly affect the chemistry of their envelopes. Based on our results in FIRS2 and LkHα\alpha 234, we propose some abundance ratios that can be used as chemical clocks for the envelopes of IM YSOs. The SiO/CS, CN/N2H+, HCN/N2H+, DCO+/HCO+ and D2CO/DCO+ ratios are good diagnostics of the protostellar evolutionary stage.Comment: 24 pages, 17 figure

    Neutral atomic carbon in the globules of the Helix

    Get PDF
    We report detection of the 609u line of neutral atomic carbon in globules of the Helix nebula. The measurements were made towards the position of peak CO emission. At the same position, we obtained high-quality CO(2-1) and 13CO(2-1) spectra and a 135" x 135" map in CO(2-1). The velocity distribution of CI shows six narrow (1 -> 2 km/sec) components which are associated with individual globules traced in CO. The CI column densities are 0.5 -> 1.2 x 10^16/cm^2. CI is found to be a factor of ~6 more abundant than CO. Our estimate for the mass of the neutral envelope is an order of magnitude larger than previous estimates. The large abundance of CI in the Helix can be understood as a result of the gradual photoionisation of the molecular envelope by the central star's radiation field.Comment: 5 pages, Latex, AAS macros, 3 EPS figures, to appear in Astrophysical Journal Letter

    A search for CO+ in planetary nebulae

    Get PDF
    We have carried out a systematic search for the molecular ion CO+ in a sample of 8 protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues to the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Spitzer spectral line mapping of protostellar outflows: I. Basic data and outflow energetics

    Full text link
    We report the results of spectroscopic mapping observations carried out toward protostellar outflows in the BHR71, L1157, L1448, NGC 2071, and VLA 1623 molecular regions using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, provide detailed maps of the 8 lowest pure rotational lines of molecular hydrogen and of the [SI] 25.25 micron and [FeII] 26.0 micron fine structure lines. The molecular hydrogen lines, believed to account for a large fraction of the radiative cooling from warm molecular gas that has been heated by a non-dissociative shock, allow the energetics of the outflows to be elucidated. Within the regions mapped towards these 5 outflow sources, total H2 luminosities ranging from 0.02 to 0.75 L(solar) were inferred for the sum of the 8 lowest pure rotational transitions. By contrast, the much weaker [FeII] 26.0 micron fine structure transition traces faster, dissociative shocks; here, only a small fraction of the fast shock luminosity emerges as line radiation that can be detected with Spitzer/IRS.Comment: 38 pages including 17 figures. Accepted for publication in Ap

    The rotating molecular core and precessing outflow of the young stellar object Barnard 1c

    Get PDF
    We investigate the structure of the core surrounding the recently identified deeply embedded young stellar object Barnard 1c which has an unusual polarization pattern as traced in submillimeter dust emission. Barnard 1c lies within the Perseus molecular cloud at a distance of 250 pc. It is a deeply embedded core of 2.4 solar masses (Kirk et al.) and a luminosity of 4 +/- 2 solar luminosities. Observations of CO, 13CO, C18O, HCO+ and N2H+ were obtained with the BIMA array, together with the continuum at 3.3 mm and 2.7 mm. Single-dish measurements of N2H+ and HCO+ with FCRAO reveal the larger scale emission in these lines, The CO and HCO+ emission traces the outflow, which coincides in detail with the S-shaped jet recently found in Spitzer IRAC imaging. The N2H+ emission, which anticorrelates spatially with the C18O emission, originates from a rotating envelope with effective radius ~ 2400 AU and mass 2.1 - 2.9 solar masses. N2H+ emission is absent from a 600 AU diameter region around the young star. The remaining N2H+ emission may lie in a coherent torus of dense material. With its outflow and rotating envelope, B1c closely resembles the previously studied object L483-mm, and we conclude that it is a protostar in an early stage of evolution. We hypothesize that heating by the outflow and star has desorbed CO from grains which has destroyed N2H+ in the inner region and surmise that the presence of grains without ice mantles in this warm inner region can explain the unusual polarization signature from B1c.Comment: 17 pages, 17 figures (9 colour). Accepted to The Astrophysical Journal. For higher resolution images, see http://astrowww.phys.uvic.ca/~brenda/preprints.htm

    A Keplerian gaseous disk around the B0 star R Mon

    Get PDF
    We present high-angular resolution observations of the circumstellar disk around the massive Herbig Be star R Mon (M~8 Msun) in the continuum at 2.7mm and 1.3mm and the CO 1->0 and 2->1 rotational lines. Based on the new 1.3mm continuum image we estimate a disk mass (gas+dust) of 0.007 Msun and an outer radius of <150 AU. Our CO images are consistent with the existence of a Keplerian rotating gaseous disk around this star. Up to our knowledge, this is the most clear evidence for the existence of Keplerian disks around massive stars reported thus far. The mass and physical characteristics of this disk are similar to thoseof the more evolved T Tauri stars and indicate a shorter timescale for the evolution and dispersal of circumstellar disks around massive stars which lose most of their mass before the star becomes visible.Comment: 5 page
    corecore