616 research outputs found

    Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Full text link
    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called `hot spot', we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in e.g. silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.Comment: 7 pages including 2 pages of supplementary materia

    Coherent shuttle of electron-spin states

    Full text link
    We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.Comment: 21 pages, 10 figure

    DiatomCyc

    Get PDF

    Fluidity in the perception of auditory speech: Cross-modal recalibration of voice gender and vowel identity by a talking face

    Get PDF
    Article first published online: January 13, 2020Humans quickly adapt to variations in the speech signal. Adaptation may surface as recalibration, a learning effect driven by error-minimisation between a visual face and an ambiguous auditory speech signal, or as selective adaptation, a contrastive aftereffect driven by the acoustic clarity of the sound. Here, we examined whether these aftereffects occur for vowel identity and voice gender. Participants were exposed to male, female, or androgynous tokens of speakers pronouncing /e/, /ø/, (embedded in words with a consonant-vowel-consonant structure), or an ambiguous vowel halfway between /e/ and /ø/ dubbed onto the video of a male or female speaker pronouncing /e/ or /ø/. For both voice gender and vowel identity, we found assimilative aftereffects after exposure to auditory ambiguous adapter sounds, and contrastive aftereffects after exposure to auditory clear adapter sounds. This demonstrates that similar principles for adaptation in these dimensions are at play.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by Gravitation Grant 024.001.006 of the Language in Interaction Consortium from Netherlands Organization for Scientific Research. The third author was supported by The Netherlands Organization for Scientific Research (NWO: VENI Grant 275-89-027)
    corecore