2,719 research outputs found
Towards a physical interpretation for the Stephani Universes
A physicaly reasonable interpretation is provided for the perfect fluid,
sphericaly symmetric, conformally flat ``Stephani Universes''. The free
parameters of this class of exact solutions are determined so that the ideal
gas relation is identicaly fulfiled, while the full equation of state
of a classical monatomic ideal gas and a matter-radiation mixture holds up to a
good approximation in a near dust, matter dominated regime. Only the models
having spacelike slices with positive curvature admit a regular evolution
domain that avoids an unphysical singularity. In the matter dominated regime
these models are dynamicaly and observationaly indistinguishable from
``standard'' FLRW cosmology with a dust source.Comment: 17 pages, 2 figures, LaTeX with revtex style, submitted to General
Relativity and Gravitatio
On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity
We examine the consistency of the thermodynamics of irrotational and
non-isentropic perfect fluids complying with matter conservation by looking at
the integrability conditions of the Gibbs-Duhem relation. We show that the
latter is always integrable for fluids of the following types: (a) static, (b)
isentropic (admits a barotropic equation of state), (c) the source of a
spacetime for which , where is the dimension of the orbit of the
isometry group. This consistency scheme is tested also in two large classes of
known exact solutions for which , in general: perfect fluid Szekeres
solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation
is integrable, in general, though specific particular cases of Szekeres class
II (all complying with ) are identified for which the integrability of
this relation can be achieved. We show that Szekeres class I solutions satisfy
the integrability conditions only in two trivial cases, namely the spherically
symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology.
Explicit forms of the state variables and equations of state linking them are
given explicitly and discussed in relation to the FRW limits of the solutions.
We show that fixing free parameters in these solutions by a formal
identification with FRW parameters leads, in all cases examined, to unphysical
temperature evolution laws, quite unrelated to those of their FRW limiting
cosmologies.Comment: 29 pages, Plain.Te
Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models
We undertake a comprehensive and rigorous analytic study of the evolution of
radial profiles of covariant scalars in regular Lemaitre-Tolman-Bondi dust
models. We consider specifically the phenomenon of "profile inversions" in
which an initial clump profile of density, spatial curvature or the expansion
scalar, might evolve into a void profile (and vice versa). Previous work in the
literature on models with density void profiles and/or allowing for density
profile inversions is given full generalization, with some erroneous results
corrected. We prove rigorously that if an evolution without shell crossings is
assumed, then only the 'clump to void' inversion can occur in density profiles,
and only in hyperbolic models or regions with negative spatial curvature. The
profiles of spatial curvature follow similar patterns as those of the density,
with 'clump to void' inversions only possible for hyperbolic models or regions.
However, profiles of the expansion scalar are less restrictive, with profile
inversions necessarily taking place in elliptic models. We also examine radial
profiles in special LTB configurations: closed elliptic models, models with a
simultaneous big bang singularity, as well as a locally collapsing elliptic
region surrounded by an expanding hyperbolic background. The general analytic
statements that we obtain allow for setting up the right initial conditions to
construct fully regular LTB models with any specific qualitative requirements
for the profiles of all scalars and their time evolution. The results presented
can be very useful in guiding future numerical work on these models and in
revising previous analytic work on all their applications.Comment: Final version to appear in Classical and Quantum Gravity. Readers
eager to know the results and implications without having to go through the
technical detail are recommended to go directly to the summary and discussion
in the final section (section 11). Typos have been corrected and an important
reference has been adde
An IV for the RCT: using instrumental variables to adjust for treatment contamination in randomised controlled trials
Although the randomised controlled trial is the “gold standard” for studying the efficacy and safety of medical treatments, it is not necessarily free from bias. When patients do not follow the protocol for their assigned treatment, the resultant “treatment contamination” can produce misleading findings. The methods used historically to deal with this problem, the “as treated” and “per protocol” analysis techniques, are flawed and inaccurate. Intention to treat analysis is the solution most often used to analyse randomised controlled trials, but this approach ignores this issue of treatment contamination. Intention to treat analysis estimates the effect of recommending a treatment to study participants, not the effect of the treatment on those study participants who actually received it. In this article, we describe a simple yet rarely used analytical technique, the “contamination adjusted intention to treat analysis,” which complements the intention to treat approach by producing a better estimate of the benefits and harms of receiving a treatment. This method uses the statistical technique of instrumental variable analysis to address contamination. We discuss the strengths and limitations of the current methods of addressing treatment contamination and the contamination adjusted intention to treat technique, provide examples of effective uses, and discuss how using estimates generated by contamination adjusted intention to treat analysis can improve clinical decision making and patient care
Local thermal equilibrium and ideal gas Stephani universes
The Stephani universes that can be interpreted as an ideal gas evolving in
local thermal equilibrium are determined. Five classes of thermodynamic schemes
are admissible, which give rise to five classes of regular models and three
classes of singular models. No Stephani universes exist representing an exact
solution to a classical ideal gas (one for which the internal energy is
proportional to the temperature). But some Stephani universes may approximate a
classical ideal gas at first order in the temperature: all of them are
obtained. Finally, some features about the physical behavior of the models are
pointed out.Comment: 20 page
Inlet flow field investigation. Part 1: Transonic flow field survey
A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data
Providing clinicians with a patient’s 10-year cardiovascular risk improves their statin prescribing: a true experiment using clinical vignettes
Abstract
Background
Statins are effective for primary prevention of cardiovascular (CV) disease, the leading cause of death in the world. Multinational guidelines emphasize CV risk as an important factor for optimal statin prescribing. However, it’s not clear how primary care providers (PCPs) use this information. The objective of this study was to determine how primary care providers use information about global CV risk for primary prevention of CV disease.
Methods
A double-blinded, randomized experiment using clinical vignettes mailed to office-based PCPs in the United States who were identified through the American Medical Association Physician Masterfile in June 2012. PCPs in the control group received clinical vignettes with all information on the risk factors needed to calculate CV risk. The experimental group received the same vignettes in addition to the subject’s 10-year calculated CV risk (Framingham risk score). The primary study outcome was the decision to prescribe a statin.
Results
Providing calculated CV risk to providers increased statin prescribing in the two high-risk cases (CV risk > 20%) by 32 percentage points (41% v. 73%; 95% CI = 23-40, p <0.001; relative risk [RR] = 1.78) and 16 percentage points (12% v. 27%, 95% CI 8.5-22.5%, p <0.001; RR = 2.25), and decreased statin prescribing in the lowest risk case (CV risk = 2% risk) by 9 percentage points [95% CI = 1.00-16.7%, p = 0.003, RR = 0.88]. Fewer than 20% of participants in each group reported routinely calculating 10-year CV risk in their patients.
Conclusions
Providers do not routinely calculate 10-year CV risk for their patients. In this vignette experiment, PCPs undertreated low LDL, high CV risk patients. Giving providers a patient’s calculated CV risk improved statin prescribing. Providing PCPs with accurate estimates of patient CV risk at the point of service has the potential to improve the efficiency of statin prescribing.http://deepblue.lib.umich.edu/bitstream/2027.42/134534/1/12872_2013_Article_871.pd
Multimode Memories in Atomic Ensembles
The ability to store multiple optical modes in a quantum memory allows for
increased efficiency of quantum communication and computation. Here we compute
the multimode capacity of a variety of quantum memory protocols based on light
storage in ensembles of atoms. We find that adding a controlled inhomogeneous
broadening improves this capacity significantly.Comment: Published version. Many thanks are due to Christoph Simon for his
help and suggestions. (This acknowledgement is missing from the final draft:
apologies!
Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy
We introduce a weighed scalar average formalism ("q-average") for the study
of the theoretical properties and the dynamics of spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models models. The "q-scalars" that emerge by
applying the q-averages to the density, Hubble expansion and spatial curvature
(which are common to FLRW models) are directly expressible in terms of
curvature and kinematic invariants and identically satisfy FLRW evolution laws
without the back-reaction terms that characterize Buchert's average. The local
and non-local fluctuations and perturbations with respect to the q-average
convey the effects of inhomogeneity through the ratio of curvature and
kinematic invariants and the magnitude of radial gradients. All curvature and
kinematic proper tensors that characterize the models are expressible as
irreducible algebraic expansions on the metric and 4-velocity, whose
coefficients are the q-scalars and their linear and quadratic local
fluctuations. All invariant contractions of these tensors are quadratic
fluctuations, whose q-averages are directly and exactly related to statistical
correlation moments of the density and Hubble expansion scalar. We explore the
application of this formalism to a definition of a gravitational entropy
functional proposed by Hosoya et al (2004 Phys. Rev. Lett. 92 141302). We show
that a positive entropy production follows from a negative correlation between
fluctuations of the density and Hubble scalar, providing a brief outline on its
fulfillment in various LTB models and regions. While the q-average formalism is
specially suited for LTB and Szekeres models, it may provide a valuable
theoretical insight on the properties of scalar averaging in inhomogeneous
spacetimes in general.Comment: 27 pages in IOP format, 1 figure. Matches version accepted for
publication in Classical and Quantum Gravit
Back-reaction and effective acceleration in generic LTB dust models
We provide a thorough examination of the conditions for the existence of
back-reaction and an "effective" acceleration (in the context of Buchert's
averaging formalism) in regular generic spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical
comoving domains, we verify rigorously the fulfillment of these conditions
expressed in terms of suitable scalar variables that are evaluated at the
boundary of every domain. Effective deceleration necessarily occurs in all
domains in: (a) the asymptotic radial range of models converging to a FLRW
background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c)
LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating
domains are proven to exist in the following scenarios: (i) central vacuum
regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial
range of models converging to a FLRW background, (iv) the asymptotic radial
range of models converging to a Minkowski vacuum and (v) domains near and/or
intersecting a non-simultaneous big bang. All these scenarios occur in
hyperbolic models with negative averaged and local spatial curvature, though
scenarios (iv) and (v) are also possible in low density regions of a class of
elliptic models in which local spatial curvature is negative but its average is
positive. Rough numerical estimates between -0.003 and -0.5 were found for the
effective deceleration parameter. While the existence of accelerating domains
cannot be ruled out in models converging to an Einstein de Sitter background
and in domains undergoing gravitational collapse, the conditions for this are
very restrictive. The results obtained may provide important theoretical clues
on the effects of back-reaction and averaging in more general non-spherical
models.Comment: Final version accepted for publication in Classical and Quantum
Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure
- …